Displaying similar documents to “The common division topology on

Totally Brown subsets of the Golomb space and the Kirch space

José del Carmen Alberto-Domínguez, Gerardo Acosta, Gerardo Delgadillo-Piñón (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A topological space X is totally Brown if for each n { 1 } and every nonempty open subsets U 1 , U 2 , ... , U n of X we have cl X ( U 1 ) cl X ( U 2 ) cl X ( U n ) . Totally Brown spaces are connected. In this paper we consider the Golomb topology τ G on the set of natural numbers, as well as the Kirch topology τ K on . Then we examine subsets of these spaces which are totally Brown. Among other results, we characterize the arithmetic progressions which are either totally Brown or totally separated in ( , τ G ) . We also show that ( , τ G ) and ( , τ K ) are aposyndetic....

R z -supercontinuous functions

Davinder Singh, Brij Kishore Tyagi, Jeetendra Aggarwal, Jogendra K. Kohli (2015)

Mathematica Bohemica

Similarity:

A new class of functions called “ R z -supercontinuous functions” is introduced. Their basic properties are studied and their place in the hierarchy of strong variants of continuity that already exist in the literature is elaborated. The class of R z -supercontinuous functions properly includes the class of R cl -supercontinuous functions, Tyagi, Kohli, Singh (2013), which in its turn contains the class of cl -supercontinuous ( clopen continuous) functions, Singh (2007), Reilly, Vamanamurthy (1983),...

The Golomb space is topologically rigid

Taras O. Banakh, Dario Spirito, Sławomir Turek (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The Golomb space τ is the set of positive integers endowed with the topology τ generated by the base consisting of arithmetic progressions { a + b n : n 0 } with coprime a , b . We prove that the Golomb space τ is topologically rigid in the sense that its homeomorphism group is trivial. This resolves a problem posed by T. Banakh at Mathoverflow in 2017.

Connectedness of some rings of quotients of C ( X ) with the m -topology

F. Azarpanah, M. Paimann, A. R. Salehi (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this article we define the m -topology on some rings of quotients of C ( X ) . Using this, we equip the classical ring of quotients q ( X ) of C ( X ) with the m -topology and we show that C ( X ) with the r -topology is in fact a subspace of q ( X ) with the m -topology. Characterization of the components of rings of quotients of C ( X ) is given and using this, it turns out that q ( X ) with the m -topology is connected if and only if X is a pseudocompact almost P -space, if and only if C ( X ) with r -topology is connected. We also...

C * -points vs P -points and P -points

Jorge Martinez, Warren Wm. McGovern (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In a Tychonoff space X , the point p X is called a C * -point if every real-valued continuous function on C { p } can be extended continuously to p . Every point in an extremally disconnected space is a C * -point. A classic example is the space 𝐖 * = ω 1 + 1 consisting of the countable ordinals together with ω 1 . The point ω 1 is known to be a C * -point as well as a P -point. We supply a characterization of C * -points in totally ordered spaces. The remainder of our time is aimed at studying when a point in a product space...

A countably cellular topological group all of whose countable subsets are closed need not be -factorizable

Mihail G. Tkachenko (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We construct a Hausdorff topological group G such that 1 is a precalibre of G (hence, G has countable cellularity), all countable subsets of G are closed and C -embedded in G , but G is not -factorizable. This solves Problem 8.6.3 from the book “Topological Groups and Related Structures" (2008) in the negative.

Σ s -products revisited

Reynaldo Rojas-Hernández (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show that any Σ s -product of at most 𝔠 -many L Σ ( ω ) -spaces has the L Σ ( ω ) -property. This result generalizes some known results about L Σ ( ω ) -spaces. On the other hand, we prove that every Σ s -product of monotonically monolithic spaces is monotonically monolithic, and in a similar form, we show that every Σ s -product of Collins-Roscoe spaces has the Collins-Roscoe property. These results generalize some known results about the Collins-Roscoe spaces and answer some questions due to Tkachuk [Lifting the Collins-Roscoe...

On n -thin dense sets in powers of topological spaces

Adam Bartoš (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A subset of a product of topological spaces is called n -thin if every its two distinct points differ in at least n coordinates. We generalize a construction of Gruenhage, Natkaniec, and Piotrowski, and obtain, under CH, a countable T 3 space X without isolated points such that X n contains an n -thin dense subset, but X n + 1 does not contain any n -thin dense subset. We also observe that part of the construction can be carried out under MA.