Some results on derangement polynomials
Mehdi Hassani; Hossein Moshtagh; Mohammad Ghorbani
Commentationes Mathematicae Universitatis Carolinae (2022)
- Volume: 62 63, Issue: 3, page 307-313
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHassani, Mehdi, Moshtagh, Hossein, and Ghorbani, Mohammad. "Some results on derangement polynomials." Commentationes Mathematicae Universitatis Carolinae 62 63.3 (2022): 307-313. <http://eudml.org/doc/299037>.
@article{Hassani2022,
abstract = {We study moments of the difference $D_n(x)-x^n n! \{\rm e\}^\{-1/x\}$ concerning derangement polynomials $D_n(x)$. For the first moment, we obtain an explicit formula in terms of the exponential integral function and we show that it is always negative for $x>0$. For the higher moments, we obtain a multiple integral representation of the order of the moment under computation.},
author = {Hassani, Mehdi, Moshtagh, Hossein, Ghorbani, Mohammad},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {derangement; permutation; integration},
language = {eng},
number = {3},
pages = {307-313},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Some results on derangement polynomials},
url = {http://eudml.org/doc/299037},
volume = {62 63},
year = {2022},
}
TY - JOUR
AU - Hassani, Mehdi
AU - Moshtagh, Hossein
AU - Ghorbani, Mohammad
TI - Some results on derangement polynomials
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2022
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62 63
IS - 3
SP - 307
EP - 313
AB - We study moments of the difference $D_n(x)-x^n n! {\rm e}^{-1/x}$ concerning derangement polynomials $D_n(x)$. For the first moment, we obtain an explicit formula in terms of the exponential integral function and we show that it is always negative for $x>0$. For the higher moments, we obtain a multiple integral representation of the order of the moment under computation.
LA - eng
KW - derangement; permutation; integration
UR - http://eudml.org/doc/299037
ER -
References
top- Aigner M., Ziegler G. M., Proofs from The Book, Springer, Berlin, 2018. MR3823190
- Askey R. A., Ismail M. E. H., 10.4153/CJM-1976-082-8, Canadian. J. Math. 28 (1976), no. 4, 853–874. MR0406808DOI10.4153/CJM-1976-082-8
- Axler S., Measure, Integration & Real Analysis, Graduate Texts in Mathematics, 282, Springer, Cham, 2020. MR3972068
- Benyattou A., 10.7546/nntdm.2020.26.4.128-135, Notes Number Theory Discrete Math. 26 (2020), no. 4, 128–135. DOI10.7546/nntdm.2020.26.4.128-135
- Chow C.-O., On derangement polynomials of type , Sém. Lothar. Combin. 55 (2005/07), Art. B55b, 6 pages. MR2223025
- Chow C.-O., 10.1016/j.jcta.2008.11.006, J. Combin. Theory Ser. A 116 (2009), no. 4, 816–830. MR2513636DOI10.1016/j.jcta.2008.11.006
- Hassani M., Derangements and applications, J. Integer Seq. 6 (2003), no. 1, Art. 03.1.2, 8 pages. MR1971432
- Hassani M., 10.1017/S0025557200174443, Math. Gaz. 88 (2004), no. 511, 123–126. MR1971432DOI10.1017/S0025557200174443
- Hassani M., Enumeration by , Modern Discrete Mathematics and Analysis: Springer Optim. Appl., 131, Springer, Cham, 2018, pages 227–233. MR3887936
- Hassani M., Derangements and alternating sum of permutations by integration, J. Integer Seq. 23 (2020), no. 7, Art. 20.7.8, 9 pages. MR4134234
- Hassani M., On a difference concerning the number and summation identities of permutations, J. Inequal. Spec. Funct. 12 (2021), no. 1, 14–22. MR4246713
- Kayll P. M., 10.4169/math.mag.84.2.108, Math. Mag. 84 (2011), no. 2, 108–119. MR2793183DOI10.4169/math.mag.84.2.108
- LeVeque W. J., Topics in Number Theory. Vols. 1 and 2, Addison–Wesley Publishing, Mass, 1956. MR0080682
- Radoux C., 10.1016/S0195-6698(13)80115-1, European J. Combin. 12 (1991), no. 4, 327–329 (French). MR1120419DOI10.1016/S0195-6698(13)80115-1
- Radoux C., 10.1016/S0377-0427(99)00120-X, Proc. of the 8th International Congress on Computational and Applied Mathematics, J. Comput. Appl. Math. 115 (2000), no. 1–2, 471–477. MR1747239DOI10.1016/S0377-0427(99)00120-X
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.