Hyperplanes in matroids and the axiom of choice

Marianne Morillon

Commentationes Mathematicae Universitatis Carolinae (2022)

  • Volume: 62 63, Issue: 4, page 423-441
  • ISSN: 0010-2628

Abstract

top
We show that in set theory without the axiom of choice ZF, the statement sH: “Every proper closed subset of a finitary matroid is the intersection of hyperplanes including it” implies AC fin , the axiom of choice for (nonempty) finite sets. We also provide an equivalent of the statement AC fin in terms of “graphic” matroids. Several open questions stay open in ZF, for example: does sH imply the axiom of choice?

How to cite

top

Morillon, Marianne. "Hyperplanes in matroids and the axiom of choice." Commentationes Mathematicae Universitatis Carolinae 62 63.4 (2022): 423-441. <http://eudml.org/doc/299040>.

@article{Morillon2022,
abstract = {We show that in set theory without the axiom of choice ZF, the statement sH: “Every proper closed subset of a finitary matroid is the intersection of hyperplanes including it” implies AC$^\{\rm fin\}$, the axiom of choice for (nonempty) finite sets. We also provide an equivalent of the statement AC$^\{\rm fin\}$ in terms of “graphic” matroids. Several open questions stay open in ZF, for example: does sH imply the axiom of choice?},
author = {Morillon, Marianne},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {axiom of choice; finitary matroid; circuit; hyperplane; graph},
language = {eng},
number = {4},
pages = {423-441},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Hyperplanes in matroids and the axiom of choice},
url = {http://eudml.org/doc/299040},
volume = {62 63},
year = {2022},
}

TY - JOUR
AU - Morillon, Marianne
TI - Hyperplanes in matroids and the axiom of choice
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2022
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62 63
IS - 4
SP - 423
EP - 441
AB - We show that in set theory without the axiom of choice ZF, the statement sH: “Every proper closed subset of a finitary matroid is the intersection of hyperplanes including it” implies AC$^{\rm fin}$, the axiom of choice for (nonempty) finite sets. We also provide an equivalent of the statement AC$^{\rm fin}$ in terms of “graphic” matroids. Several open questions stay open in ZF, for example: does sH imply the axiom of choice?
LA - eng
KW - axiom of choice; finitary matroid; circuit; hyperplane; graph
UR - http://eudml.org/doc/299040
ER -

References

top
  1. Cohn P. M., Universal Algebra, Mathematics and Its Applications, 6, D. Reidel Publishing Co., Dordrecht, 1981. Zbl0461.08001MR0620952
  2. Fournier J.-C., Introduction à la notion de matroïde, Géométrie combinatoire, Mathematical Publications of Orsay 79, 3, Université de Paris-Sud, Département de Mathématique, Orsay, 1979, pages 57 (French). MR0551494
  3. Higgs D. A., 10.4064/cm-20-2-215-220, Colloq. Math. 20 (1969), 215–220. MR0274315DOI10.4064/cm-20-2-215-220
  4. Hodges W., Krull implies Zorn, J. London Math. Soc. (2) 19 (1979), no. 2, 285–287. MR0533327
  5. Höft H., Howard P., 10.1002/malq.19730191103, Z. Math. Logik Grundlagen Math. 19 (1973), 191. MR0316283DOI10.1002/malq.19730191103
  6. Howard P., Bases, spanning sets, and the axiom of choice, MLQ Math. Log. Q. 53 (2007), no. 3, 247–254. Zbl1121.03064MR2330594
  7. Howard P., Rubin J. E., 10.1090/surv/059, Mathematical Surveys and Monographs, 59, American Mathematical Society, Providence, 1998. Zbl0947.03001MR1637107DOI10.1090/surv/059
  8. Jech T. J., The Axiom of Choice, Studies in Logic and the Foundations of Mathematics, 75, North-Holland Publishing Co., Amsterdam, American Elsevier Publishing Co., New York, 1973. Zbl0259.02052MR0396271
  9. Klee V., The greedy algorithm for finitary and cofinitary matroids, Combinatorics, Proc. Symp. Pure Math., Vol. XIX, Univ. California, Los Angeles, Calif. 1968, Amer. Math. Soc., Providence, 1971, pages 137–152. MR0332538
  10. Morillon M., Linear forms and axioms of choice, Comment. Math. Univ. Carolin. 50 (2009), no. 3, 421–431. Zbl1212.03034MR2573415
  11. Morillon M., 10.1017/jsl.2019.48, J. Symb. Log. 85 (2020), no. 1, 439–455. MR4085068DOI10.1017/jsl.2019.48
  12. Nicoletti G., White N., Axiom Systems. Theory of Matroids, Encyclopedia Math. Appl., 26, Cambridge Univ. Press, Cambridge, 1986, pages 29–44. MR0849391
  13. Oxley J. G., Infinite matroids, Proc. London Math. Soc. (3) 37 (1978), no. 2, 259–272. MR0507607
  14. Oxley J., Matroid Theory, Oxford Graduate Texts in Mathematics, 21, Oxford University Press, Oxford, 2011. MR2849819
  15. Rubin H., Rubin J. E., Equivalents of the Axiom of Choice, Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam, 1970. MR0434812
  16. Welsh D. J. A., Matroid Theory, L. M. S. Monographs, 8, Academic Press, London, 1976. Zbl0343.05002MR0427112
  17. Zariski O., Samuel P., Commutative Algebra. Vol. 1, Graduate Texts in Mathematics, 28, Springer, New York, 1975. MR0384768

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.