Hyperplanes in matroids and the axiom of choice
Commentationes Mathematicae Universitatis Carolinae (2022)
- Volume: 62 63, Issue: 4, page 423-441
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topMorillon, Marianne. "Hyperplanes in matroids and the axiom of choice." Commentationes Mathematicae Universitatis Carolinae 62 63.4 (2022): 423-441. <http://eudml.org/doc/299040>.
@article{Morillon2022,
abstract = {We show that in set theory without the axiom of choice ZF, the statement sH: “Every proper closed subset of a finitary matroid is the intersection of hyperplanes including it” implies AC$^\{\rm fin\}$, the axiom of choice for (nonempty) finite sets. We also provide an equivalent of the statement AC$^\{\rm fin\}$ in terms of “graphic” matroids. Several open questions stay open in ZF, for example: does sH imply the axiom of choice?},
author = {Morillon, Marianne},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {axiom of choice; finitary matroid; circuit; hyperplane; graph},
language = {eng},
number = {4},
pages = {423-441},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Hyperplanes in matroids and the axiom of choice},
url = {http://eudml.org/doc/299040},
volume = {62 63},
year = {2022},
}
TY - JOUR
AU - Morillon, Marianne
TI - Hyperplanes in matroids and the axiom of choice
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2022
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62 63
IS - 4
SP - 423
EP - 441
AB - We show that in set theory without the axiom of choice ZF, the statement sH: “Every proper closed subset of a finitary matroid is the intersection of hyperplanes including it” implies AC$^{\rm fin}$, the axiom of choice for (nonempty) finite sets. We also provide an equivalent of the statement AC$^{\rm fin}$ in terms of “graphic” matroids. Several open questions stay open in ZF, for example: does sH imply the axiom of choice?
LA - eng
KW - axiom of choice; finitary matroid; circuit; hyperplane; graph
UR - http://eudml.org/doc/299040
ER -
References
top- Cohn P. M., Universal Algebra, Mathematics and Its Applications, 6, D. Reidel Publishing Co., Dordrecht, 1981. Zbl0461.08001MR0620952
- Fournier J.-C., Introduction à la notion de matroïde, Géométrie combinatoire, Mathematical Publications of Orsay 79, 3, Université de Paris-Sud, Département de Mathématique, Orsay, 1979, pages 57 (French). MR0551494
- Higgs D. A., 10.4064/cm-20-2-215-220, Colloq. Math. 20 (1969), 215–220. MR0274315DOI10.4064/cm-20-2-215-220
- Hodges W., Krull implies Zorn, J. London Math. Soc. (2) 19 (1979), no. 2, 285–287. MR0533327
- Höft H., Howard P., 10.1002/malq.19730191103, Z. Math. Logik Grundlagen Math. 19 (1973), 191. MR0316283DOI10.1002/malq.19730191103
- Howard P., Bases, spanning sets, and the axiom of choice, MLQ Math. Log. Q. 53 (2007), no. 3, 247–254. Zbl1121.03064MR2330594
- Howard P., Rubin J. E., 10.1090/surv/059, Mathematical Surveys and Monographs, 59, American Mathematical Society, Providence, 1998. Zbl0947.03001MR1637107DOI10.1090/surv/059
- Jech T. J., The Axiom of Choice, Studies in Logic and the Foundations of Mathematics, 75, North-Holland Publishing Co., Amsterdam, American Elsevier Publishing Co., New York, 1973. Zbl0259.02052MR0396271
- Klee V., The greedy algorithm for finitary and cofinitary matroids, Combinatorics, Proc. Symp. Pure Math., Vol. XIX, Univ. California, Los Angeles, Calif. 1968, Amer. Math. Soc., Providence, 1971, pages 137–152. MR0332538
- Morillon M., Linear forms and axioms of choice, Comment. Math. Univ. Carolin. 50 (2009), no. 3, 421–431. Zbl1212.03034MR2573415
- Morillon M., 10.1017/jsl.2019.48, J. Symb. Log. 85 (2020), no. 1, 439–455. MR4085068DOI10.1017/jsl.2019.48
- Nicoletti G., White N., Axiom Systems. Theory of Matroids, Encyclopedia Math. Appl., 26, Cambridge Univ. Press, Cambridge, 1986, pages 29–44. MR0849391
- Oxley J. G., Infinite matroids, Proc. London Math. Soc. (3) 37 (1978), no. 2, 259–272. MR0507607
- Oxley J., Matroid Theory, Oxford Graduate Texts in Mathematics, 21, Oxford University Press, Oxford, 2011. MR2849819
- Rubin H., Rubin J. E., Equivalents of the Axiom of Choice, Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam, 1970. MR0434812
- Welsh D. J. A., Matroid Theory, L. M. S. Monographs, 8, Academic Press, London, 1976. Zbl0343.05002MR0427112
- Zariski O., Samuel P., Commutative Algebra. Vol. 1, Graduate Texts in Mathematics, 28, Springer, New York, 1975. MR0384768
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.