Linear forms and axioms of choice

Marianne Morillon

Commentationes Mathematicae Universitatis Carolinae (2009)

  • Volume: 50, Issue: 3, page 421-431
  • ISSN: 0010-2628

Abstract

top
We work in set-theory without choice ZF. Given a commutative field 𝕂 , we consider the statement 𝐃 ( 𝕂 ) : “On every non null 𝕂 -vector space there exists a non-null linear form.” We investigate various statements which are equivalent to 𝐃 ( 𝕂 ) in ZF. Denoting by 2 the two-element field, we deduce that 𝐃 ( 2 ) implies the axiom of choice for pairs. We also deduce that 𝐃 ( ) implies the axiom of choice for linearly ordered sets isomorphic with .

How to cite

top

Morillon, Marianne. "Linear forms and axioms of choice." Commentationes Mathematicae Universitatis Carolinae 50.3 (2009): 421-431. <http://eudml.org/doc/33325>.

@article{Morillon2009,
abstract = {We work in set-theory without choice ZF. Given a commutative field $\mathbb \{K\}$, we consider the statement $\mathbf \{D\} (\mathbb \{K\})$: “On every non null $\mathbb \{K\}$-vector space there exists a non-null linear form.” We investigate various statements which are equivalent to $\mathbf \{D\} (\mathbb \{K\})$ in ZF. Denoting by $\mathbb \{Z\}_2$ the two-element field, we deduce that $\mathbf \{D\} (\mathbb \{Z\}_2)$ implies the axiom of choice for pairs. We also deduce that $\mathbf \{D\} (\mathbb \{Q\})$ implies the axiom of choice for linearly ordered sets isomorphic with $\mathbb \{Z\}$.},
author = {Morillon, Marianne},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Axiom of Choice; axiom of finite choice; bases in a vector space; linear forms; axiom of choice; axiom of finite choice; base in a vector space; linear form},
language = {eng},
number = {3},
pages = {421-431},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Linear forms and axioms of choice},
url = {http://eudml.org/doc/33325},
volume = {50},
year = {2009},
}

TY - JOUR
AU - Morillon, Marianne
TI - Linear forms and axioms of choice
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 3
SP - 421
EP - 431
AB - We work in set-theory without choice ZF. Given a commutative field $\mathbb {K}$, we consider the statement $\mathbf {D} (\mathbb {K})$: “On every non null $\mathbb {K}$-vector space there exists a non-null linear form.” We investigate various statements which are equivalent to $\mathbf {D} (\mathbb {K})$ in ZF. Denoting by $\mathbb {Z}_2$ the two-element field, we deduce that $\mathbf {D} (\mathbb {Z}_2)$ implies the axiom of choice for pairs. We also deduce that $\mathbf {D} (\mathbb {Q})$ implies the axiom of choice for linearly ordered sets isomorphic with $\mathbb {Z}$.
LA - eng
KW - Axiom of Choice; axiom of finite choice; bases in a vector space; linear forms; axiom of choice; axiom of finite choice; base in a vector space; linear form
UR - http://eudml.org/doc/33325
ER -

References

top
  1. Blass A., 10.1090/conm/031/763890, in Axiomatic Set Theory (Boulder, Colo., 1983), Contemp. Math., 31, pp. 31--33, American Mathematical Society, Providence, RI, 1984. Zbl0557.03030MR0763890DOI10.1090/conm/031/763890
  2. Delhommé C., Morillon M., Spanning graphs and the axiom of choice, Rep. Math. Logic 40 (2006), 165--180. MR2207308
  3. Halpern J.D., 10.1090/S0002-9939-1966-0194340-1, Proc. Amer. Math. Soc. 17 (1966), 670--673. Zbl0148.25401MR0194340DOI10.1090/S0002-9939-1966-0194340-1
  4. Hodges W., Model Theory, Encyclopedia of Mathematics and its Applications, 42, Cambridge University Press, Cambridge, 1993. Zbl1139.03021MR1221741
  5. Höft H., Howard P., 10.1002/malq.19730191103, Z. Math. Logik Grundlagen Math. 19 (1973), 191. MR0316283DOI10.1002/malq.19730191103
  6. Howard P., 10.1002/malq.200610043, MLQ Math. Log. Q. 53 (2007), no. 3, 247--254. Zbl1121.03064MR2330594DOI10.1002/malq.200610043
  7. Howard P., Rubin J.E., Consequences of the Axiom of Choice, Mathematical Surveys and Monographs, 59, American Mathematical Society, Providence, RI, 1998. Zbl0947.03001MR1637107
  8. Jech T.J., The Axiom of Choice, North-Holland Publishing Co., Amsterdam, 1973. Zbl0259.02052MR0396271
  9. Jurie P.-F., Coproduits Booléiens (Théorie générale et application à la théorie des anneaux booléiens monadiques), PhD Thesis, University of Clermont-Ferrand, 1965. 
  10. Keremedis K., 10.1090/S0002-9939-96-03305-9, Proc. Amer. Math. Soc. 124 (1996), no. 8, 2527--2531. Zbl0859.03022MR1322930DOI10.1090/S0002-9939-96-03305-9
  11. Keremedis K., 10.1002/1521-3870(200105)47:2<205::AID-MALQ205>3.0.CO;2-I, MLQ Math. Log. Q. 47 (2001), no. 2, 205--210. Zbl1001.03043MR1829941DOI10.1002/1521-3870(200105)47:2<205::AID-MALQ205>3.0.CO;2-I
  12. Luxemburg W., Reduced powers of the real number system and equivalents of the Hahn-Banach extension theorem, Applications of Model Theory to Algebra, Analysis and Probability (Internat. Sympos., Pasadena, Calif., 1967), Holt, Rinehart and Winston, New York, 1969, pp. 123--137. Zbl0181.40101MR0237327
  13. Mathias A., A note on chameleons, preprint. 
  14. Morillon M., Algèbres de Boole mesurées et axiome du choix, in Séminaire d'Analyse, 5, (Clermont-Ferrand, 1989--1990), Exp. No. 15, Univ. Clermont-Ferrand II, Clermont, 1993. Zbl0899.03036MR1261917
  15. Shelah S., 10.1007/BF02760522, Israel J. Math. 48 (1984), no. 1, 1--47. Zbl0596.03055MR0768264DOI10.1007/BF02760522
  16. Solovay R.M., 10.2307/1970696, Ann. of Math. (2) 92 (1970), 1--56. Zbl0207.00905MR0265151DOI10.2307/1970696
  17. Wright J.D.M., 10.1090/S0002-9904-1973-13399-3, Bull. Amer. Math. Soc. 79 (1973), 1247--1250. Zbl0284.46006MR0328649DOI10.1090/S0002-9904-1973-13399-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.