Linear forms and axioms of choice
Commentationes Mathematicae Universitatis Carolinae (2009)
- Volume: 50, Issue: 3, page 421-431
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topMorillon, Marianne. "Linear forms and axioms of choice." Commentationes Mathematicae Universitatis Carolinae 50.3 (2009): 421-431. <http://eudml.org/doc/33325>.
@article{Morillon2009,
abstract = {We work in set-theory without choice ZF. Given a commutative field $\mathbb \{K\}$, we consider the statement $\mathbf \{D\} (\mathbb \{K\})$: “On every non null $\mathbb \{K\}$-vector space there exists a non-null linear form.” We investigate various statements which are equivalent to $\mathbf \{D\} (\mathbb \{K\})$ in ZF. Denoting by $\mathbb \{Z\}_2$ the two-element field, we deduce that $\mathbf \{D\} (\mathbb \{Z\}_2)$ implies the axiom of choice for pairs. We also deduce that $\mathbf \{D\} (\mathbb \{Q\})$ implies the axiom of choice for linearly ordered sets isomorphic with $\mathbb \{Z\}$.},
author = {Morillon, Marianne},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Axiom of Choice; axiom of finite choice; bases in a vector space; linear forms; axiom of choice; axiom of finite choice; base in a vector space; linear form},
language = {eng},
number = {3},
pages = {421-431},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Linear forms and axioms of choice},
url = {http://eudml.org/doc/33325},
volume = {50},
year = {2009},
}
TY - JOUR
AU - Morillon, Marianne
TI - Linear forms and axioms of choice
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 3
SP - 421
EP - 431
AB - We work in set-theory without choice ZF. Given a commutative field $\mathbb {K}$, we consider the statement $\mathbf {D} (\mathbb {K})$: “On every non null $\mathbb {K}$-vector space there exists a non-null linear form.” We investigate various statements which are equivalent to $\mathbf {D} (\mathbb {K})$ in ZF. Denoting by $\mathbb {Z}_2$ the two-element field, we deduce that $\mathbf {D} (\mathbb {Z}_2)$ implies the axiom of choice for pairs. We also deduce that $\mathbf {D} (\mathbb {Q})$ implies the axiom of choice for linearly ordered sets isomorphic with $\mathbb {Z}$.
LA - eng
KW - Axiom of Choice; axiom of finite choice; bases in a vector space; linear forms; axiom of choice; axiom of finite choice; base in a vector space; linear form
UR - http://eudml.org/doc/33325
ER -
References
top- Blass A., 10.1090/conm/031/763890, in Axiomatic Set Theory (Boulder, Colo., 1983), Contemp. Math., 31, pp. 31--33, American Mathematical Society, Providence, RI, 1984. Zbl0557.03030MR0763890DOI10.1090/conm/031/763890
- Delhommé C., Morillon M., Spanning graphs and the axiom of choice, Rep. Math. Logic 40 (2006), 165--180. MR2207308
- Halpern J.D., 10.1090/S0002-9939-1966-0194340-1, Proc. Amer. Math. Soc. 17 (1966), 670--673. Zbl0148.25401MR0194340DOI10.1090/S0002-9939-1966-0194340-1
- Hodges W., Model Theory, Encyclopedia of Mathematics and its Applications, 42, Cambridge University Press, Cambridge, 1993. Zbl1139.03021MR1221741
- Höft H., Howard P., 10.1002/malq.19730191103, Z. Math. Logik Grundlagen Math. 19 (1973), 191. MR0316283DOI10.1002/malq.19730191103
- Howard P., 10.1002/malq.200610043, MLQ Math. Log. Q. 53 (2007), no. 3, 247--254. Zbl1121.03064MR2330594DOI10.1002/malq.200610043
- Howard P., Rubin J.E., Consequences of the Axiom of Choice, Mathematical Surveys and Monographs, 59, American Mathematical Society, Providence, RI, 1998. Zbl0947.03001MR1637107
- Jech T.J., The Axiom of Choice, North-Holland Publishing Co., Amsterdam, 1973. Zbl0259.02052MR0396271
- Jurie P.-F., Coproduits Booléiens (Théorie générale et application à la théorie des anneaux booléiens monadiques), PhD Thesis, University of Clermont-Ferrand, 1965.
- Keremedis K., 10.1090/S0002-9939-96-03305-9, Proc. Amer. Math. Soc. 124 (1996), no. 8, 2527--2531. Zbl0859.03022MR1322930DOI10.1090/S0002-9939-96-03305-9
- Keremedis K., 10.1002/1521-3870(200105)47:2<205::AID-MALQ205>3.0.CO;2-I, MLQ Math. Log. Q. 47 (2001), no. 2, 205--210. Zbl1001.03043MR1829941DOI10.1002/1521-3870(200105)47:2<205::AID-MALQ205>3.0.CO;2-I
- Luxemburg W., Reduced powers of the real number system and equivalents of the Hahn-Banach extension theorem, Applications of Model Theory to Algebra, Analysis and Probability (Internat. Sympos., Pasadena, Calif., 1967), Holt, Rinehart and Winston, New York, 1969, pp. 123--137. Zbl0181.40101MR0237327
- Mathias A., A note on chameleons, preprint.
- Morillon M., Algèbres de Boole mesurées et axiome du choix, in Séminaire d'Analyse, 5, (Clermont-Ferrand, 1989--1990), Exp. No. 15, Univ. Clermont-Ferrand II, Clermont, 1993. Zbl0899.03036MR1261917
- Shelah S., 10.1007/BF02760522, Israel J. Math. 48 (1984), no. 1, 1--47. Zbl0596.03055MR0768264DOI10.1007/BF02760522
- Solovay R.M., 10.2307/1970696, Ann. of Math. (2) 92 (1970), 1--56. Zbl0207.00905MR0265151DOI10.2307/1970696
- Wright J.D.M., 10.1090/S0002-9904-1973-13399-3, Bull. Amer. Math. Soc. 79 (1973), 1247--1250. Zbl0284.46006MR0328649DOI10.1090/S0002-9904-1973-13399-3
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.