TPM: Transition probability matrix - Graph structural feature based embedding
Sarmad N. Mohammed; Semra Gündüç
Kybernetika (2023)
- Volume: 59, Issue: 2, page 234-253
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topN. Mohammed, Sarmad, and Gündüç, Semra. "TPM: Transition probability matrix - Graph structural feature based embedding." Kybernetika 59.2 (2023): 234-253. <http://eudml.org/doc/299089>.
@article{N2023,
abstract = {In this work, Transition Probability Matrix (TPM) is proposed as a new method for extracting the features of nodes in the graph. The proposed method uses random walks to capture the connectivity structure of a node's close neighborhood. The information obtained from random walks is converted to anonymous walks to extract the topological features of nodes. In the embedding process of nodes, anonymous walks are used since they capture the topological similarities of connectivities better than random walks. Therefore the obtained embedding vectors have richer information about the underlying connectivity structure. The method is applied to node classification and link prediction tasks. The performance of the proposed algorithm is superior to the state-of-the-art algorithms in the recent literature. Moreover, the extracted information about the connectivity structure of similar networks is used to link prediction and node classification tasks for a completely new graph.},
author = {N. Mohammed, Sarmad, Gündüç, Semra},
journal = {Kybernetika},
keywords = {graph representation learning; feature learning; link prediction; node classification; anonymous random walk},
language = {eng},
number = {2},
pages = {234-253},
publisher = {Institute of Information Theory and Automation AS CR},
title = {TPM: Transition probability matrix - Graph structural feature based embedding},
url = {http://eudml.org/doc/299089},
volume = {59},
year = {2023},
}
TY - JOUR
AU - N. Mohammed, Sarmad
AU - Gündüç, Semra
TI - TPM: Transition probability matrix - Graph structural feature based embedding
JO - Kybernetika
PY - 2023
PB - Institute of Information Theory and Automation AS CR
VL - 59
IS - 2
SP - 234
EP - 253
AB - In this work, Transition Probability Matrix (TPM) is proposed as a new method for extracting the features of nodes in the graph. The proposed method uses random walks to capture the connectivity structure of a node's close neighborhood. The information obtained from random walks is converted to anonymous walks to extract the topological features of nodes. In the embedding process of nodes, anonymous walks are used since they capture the topological similarities of connectivities better than random walks. Therefore the obtained embedding vectors have richer information about the underlying connectivity structure. The method is applied to node classification and link prediction tasks. The performance of the proposed algorithm is superior to the state-of-the-art algorithms in the recent literature. Moreover, the extracted information about the connectivity structure of similar networks is used to link prediction and node classification tasks for a completely new graph.
LA - eng
KW - graph representation learning; feature learning; link prediction; node classification; anonymous random walk
UR - http://eudml.org/doc/299089
ER -
References
top- Albert, R., Barabási, A., , Rev. Mod. Phys. 74 (2002), 47-97. MR1895096DOI
- Barabási, A., , Phil. Trans. R. Soc. A. 371 (2013), 20120375. DOI
- Barabási, A., Bonabeau, E., , Scientif. Amer. 288 (2003), 60-69. DOI
- Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., al., et, , ArXiv, 2018. DOI
- Bhagat, S., Cormode, G., Muthukrishnan, S., , In: Social Network Data Analytics (C. Aggarwal, ed.), Springer, Boston 2011. MR3014047DOI
- Buffelli, D., Vandin, F., , Data 7 (2022), 10. DOI
- Cetin, P., Amrahov, S. Emrah, , Kybernetika 58 (2022), 277-300. MR4467497DOI
- Cetin, P., Amrahov, Ş. E., , Turk. J. Electr. Eng. Co. 30 (2022), 2190-2205. DOI
- Cherifi, H., Palla, G., Szymanski, B. K., Lu, X., , Appl. Netw. Sci. 4 (2019), 1-35. MR3617263DOI
- Chi, K., Yin, G., Dong, Y., Dong, H., , Knowledge-Based Systems 181 (2019), 0950-7051. DOI
- Fortunato, S., , Phys. Rep. 486 (2010), 75-174. MR2580414DOI
- Giles, C. L., Bollacker, K. D., Lawrence, S., CiteSeer: An automatic citation indexing system., In: Proc. Third ACM conference on Digital libraries, 1998, pp. 89-98.
- Girvan, M., Newman, M. E. J., , Proc. Nat. Acad. Sci. 99 (2002), 7821-7826. MR1908073DOI
- Grover, A., Leskovec, J., , In: Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York 2016, pp. 855-864. DOI
- Hamilton, W., Ying, Z., Leskovec, J., Inductive representation learning on large graphs., In: 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach 2017.
- Han, X., Wang, L., Cui, C., Ma, J., Zhang, S., , IEEE Trans. Inf. Forensics Security 12 (2017), 2242-2255. DOI
- Hanley, J. A., McNeil, B. J., , Radiology 143 (1982), 29-36. DOI
- Ivanov, S., Burnaev, E., Anonymous walk embeddings., In: Proc. 35th International Conference on Machine Learning, 2018, pp. 2186-2195.
- Khafaei, T., Taraghi, A. Tavakoli, Hosseinzadeh, M., Rezaee, A., , Soc. Netw. Anal. Min. 9 (2019), 1-11. DOI
- Kipf, T. N., Welling, M., Semi-supervised classification with graph convolutional networks., https://arxiv.org/abs/1609.02907, 2016.
- Kossinets, G., Watts, D. J., , Science 311 (2006), 88-90. MR2192483DOI
- Lancichinetti, A., Fortunato, S., Radicchi, F., , Phys. Rev. E 78 (2008), 046110. DOI
- Liben-Nowell, D., Kleinberg, J., , In: Proc. twelfth international conference on Information and knowledge management, New Orleans 2003, pp. 556-559. DOI
- Martínez, V., Berzal, F., Cubero, J., , ACM Comput. Surv. 49 (2016), 1-33. MR3431093DOI
- McCallum, A. K., Nigam, K., Rennie, J., Seymore, K., , Inform, Retrieval 3 (2000), 127-163. DOI
- Mele, A., , J. Bus. Econom. Statist. 40 (2022), 1377-1389. MR4439296DOI
- Micali, S., Zhu, Z. A., , Discrete Appl. Math. 200 (2016), 108-122. MR3442578DOI
- Mohammed, S. N., Gündüç, S., , Turk. J. Electr. Eng. Co. 30 (2022), 1868-1881. DOI
- Molokwu, B., Shuvo, S. B., Kar, N. C., Kobti, Z., , In: 32nd International Conference on Scientific and Statistical Database Management, Vienna 2020, pp. 1-10. DOI
- Palla, G., Derényi, I., Farkas, I., Vicsek, T., , Nature 435 (2005), 814-818. DOI
- Pavlopoulou, M. E. G., Tzortzis, G., Vogiatzis, D., Paliouras, G., , In: 12th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP), Bratislava 2017, pp. 40-45. DOI
- Perozzi, B., Al-Rfou, R., Skiena, S., , In: Proc. 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York 2014, pp. 701-710. DOI
- Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T., , AI Magazine 29 (2008), 93-93. DOI
- Sun, K., Wang, L., Xu, B., Zhao, W., Teng, S. W., Xia, F., , IEEE Access 8 (2020), 205600-205617. DOI
- Tamassia, R., , Chapman and Hall/CRC, New York 2013. MR3156770DOI
- Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q., , In: Proceedings of the 24th International Conference on World Wide Web, Florence, Italy, 2015, pp. 1067-1077. DOI
- Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y., Graph attention networks., Stat. 20 (2017), 10-48550.
- Vencálek, O., Hlubinka, D., , Kybernetika 57 (2021), 15-37. MR4231854DOI
- Xie, Y., Jin, P., Gong, M., Zhang, C., Yu, B., , Front. Neurosci. 14 (2020), 1. MR4495032DOI
- Xu, M., , SIAM Rev. 63 (2021), 825-853. MR4334532DOI
- Zaki, M. J., Meira, W., Data Mining and Analysis: Fundamental Concepts and Algorithms., Cambridge University Press, 2014.
- Zhang, Z., Cui, P., Zhu, W., , IEEE Trans. Knowl. Data Eng. 34 (2020), 249-270. DOI
- Zhang, X. M., Liang, L., Liu, L., Tang, M. J., , Front, Genetics 12 (2021), 690049. DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.