Equations for the set of overrings of normal rings and related ring extensions
Mabrouk Ben Nasr; Ali Jaballah
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 3, page 921-935
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topReferences
top- Anderson, D. D., Dobbs, D. E., Mullins, B., The primitive element theorem for commutative algebras, Houston J. Math. 25 (1999), 603-623 corrigendum ibid 28 2002 217-219. (1999) Zbl0999.13003MR1829123
- Ayache, A., Jaballah, A., 10.1007/PL00004598, Math. Z. 225 (1997), 49-65. (1997) Zbl0868.13007MR1451331DOI10.1007/PL00004598
- Badawi, A., Jaballah, A., Some finiteness conditions on the set of overrings of a -ring, Houston J. Math. 34 (2008), 397-408. (2008) Zbl1143.13010MR2417400
- Bastida, E., Gilmer, R., 10.1307/mmj/1029001014, Mich. Math. J. 20 (1973), 79-95. (1973) Zbl0239.13001MR0323782DOI10.1307/mmj/1029001014
- Nasr, M. Ben, 10.1007/s00605-008-0090-y, Monatsh. Math. 158 (2009), 97-102. (2009) Zbl1180.13008MR2525924DOI10.1007/s00605-008-0090-y
- Nasr, M. Ben, 10.1142/S0219498816500225, J. Algebra Appl. 15 (2016), Article ID 1650022, 8 pages. (2016) Zbl1335.13006MR3479800DOI10.1142/S0219498816500225
- Nasr, M. Ben, Jaballah, A., 10.1016/j.exmath.2007.09.002, Expo. Math. 26 (2008), 163-175. (2008) Zbl1142.13004MR2413833DOI10.1016/j.exmath.2007.09.002
- Nasr, M. Ben, Jaballah, A., 10.1142/S0219498820501716, J. Algebra Appl. 19 (2020), Article ID 2050171, 12 pages. (2020) Zbl1451.13023MR4136742DOI10.1142/S0219498820501716
- Nasr, M. Ben, Jarboui, N., 10.1007/s11587-013-0169-1, Ric. Mat. 63 (2014), 149-155. (2014) Zbl1301.13008MR3211064DOI10.1007/s11587-013-0169-1
- Nasr, M. Ben, Zeidi, N., 10.1142/S0219498817501857, J. Algebra Appl. 16 (2017), Articles ID 1750185, 11 pages. (2017) Zbl1390.13028MR3703540DOI10.1142/S0219498817501857
- Nasr, M. Ben, Zeidi, N., 10.1017/S0004972716000721, Bull. Aust. Math. Soc. 95 (2017), 14-21. (2017) Zbl1365.13011MR3592540DOI10.1017/S0004972716000721
- Davis, E. D., 10.1090/S0002-9947-1973-0325599-3, Trans. Am. Math. Soc. 182 (1973), 175-185. (1973) Zbl0272.13004MR0325599DOI10.1090/S0002-9947-1973-0325599-3
- Dobbs, D. E., Mullins, B., Picavet, G., Picavet-L'Hermitte, M., 10.1081/AGB-200066123, Commun. Algebra 33 (2005), 3091-3119. (2005) Zbl1120.13009MR2175382DOI10.1081/AGB-200066123
- Dobbs, D. E., Picavet, G., Picavet-L'Hermitte, M., 10.1016/j.jalgebra.2012.07.055, J. Algebra 371 (2012), 391-429. (2012) Zbl1271.13022MR2975403DOI10.1016/j.jalgebra.2012.07.055
- Dobbs, D. E., Shapiro, J., 10.1142/S0219498811004628, J. Algebra Appl. 10 (2011), 335-356. (2011) Zbl1221.13012MR2795742DOI10.1142/S0219498811004628
- Gaur, A., Kumar, R., 10.1080/00927872.2021.1986517, Commun. Algebra 50 (2022), 1613-1631. (2022) Zbl1482.13015MR4391512DOI10.1080/00927872.2021.1986517
- Gilmer, R., Multiplicative Ideal Theory, Pure and Applied Mathematics 12. Marcel Dekker, New York (1972). (1972) Zbl0248.13001MR0427289
- Gilmer, R., 10.1090/S0002-9939-02-06816-8, Proc. Am. Math. Soc. 131 (2003), 2337-2346. (2003) Zbl1017.13009MR1974630DOI10.1090/S0002-9939-02-06816-8
- Grothendieck, A., 10.1007/BF02684778, Publ. Math., Inst. Hautes Étud. Sci. 4 (1960), 1-228 French. (1960) Zbl0118.36206MR0217083DOI10.1007/BF02684778
- Jaballah, A., Subrings of , J. Sci. Technology 2 (1997), 1-13. (1997)
- Jaballah, A., 10.1080/00927879908826495, Commun. Algebra 27 (1999), 1307-1311. (1999) Zbl0972.13008MR1669083DOI10.1080/00927879908826495
- Jaballah, A., Finiteness of the set of intermediary rings in normal pairs, Saitama Math. J. 17 (1999), 59-61. (1999) Zbl1073.13500MR1740247
- Jaballah, A., 10.1016/j.exmath.2005.02.003, Expo. Math. 23 (2005), 353-360. (2005) Zbl1100.13008MR2186740DOI10.1016/j.exmath.2005.02.003
- Jaballah, A., 10.1007/s10587-010-0002-x, Czech. Math. J. 60 (2010), 117-124. (2010) Zbl1224.13011MR2595076DOI10.1007/s10587-010-0002-x
- Jaballah, A., 10.1007/s00605-010-0205-0, Monatsh. Math. 164 (2011), 171-181. (2011) Zbl1228.13023MR2837113DOI10.1007/s00605-010-0205-0
- Jaballah, A., 10.1142/S0219498811005658, J. Algebra Appl. 11 (2012), Article ID 1250041, 18 pages. (2012) Zbl1259.13004MR2983173DOI10.1142/S0219498811005658
- Jaballah, A., 10.1007/s13366-012-0101-y, Beitr. Algebra Geom. 54 (2013), 111-120. (2013) Zbl1267.13013MR3027669DOI10.1007/s13366-012-0101-y
- Jaballah, A., Integral domains whose overrings are discrete valuation rings, An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 62 (2016), 361-369. (2016) Zbl1389.13022MR3680213
- Jaballah, A., 10.1007/s13366-022-00677-5, (to appear) in Beitr. Algebra Geom. DOI10.1007/s13366-022-00677-5
- Jaballah, A., Jarboui, N., 10.1017/S0004972720000015, Bull. Aust. Math. Soc. 102 (2020), 15-20. (2020) Zbl1443.05187MR4120745DOI10.1017/S0004972720000015
- Matsumura, H., 10.1017/CBO9781139171762, Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, Cambridge (1989). (1989) Zbl0666.13002MR1011461DOI10.1017/CBO9781139171762
- Picavet, G., Picavet-L'Hermitte, M., FIP and FCP products of ring morphisms, Palest. J. Math. 5 (2016), 63-80. (2016) Zbl1346.13013MR3477616
- Stacks Project. Part 1: Preliminaries. Chapter 10: Commutative Algebra. Section 10.37: Normal rings. Lemma 10.37.16, Available at https://stacks.math.columbia.edu/tag/030C.
- Stacks Project. Part 1: Preliminaries. Chapter 10: Commutative Algebra. Section 10.23: Glueing propertiesLemma 10.23.1, Available at https://stacks.math.columbia.edu/tag/00HN.