Regularity of powers of binomial edge ideals of complete multipartite graphs
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 3, page 793-810
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topWang, Hong, and Tang, Zhongming. "Regularity of powers of binomial edge ideals of complete multipartite graphs." Czechoslovak Mathematical Journal 73.3 (2023): 793-810. <http://eudml.org/doc/299102>.
@article{Wang2023,
abstract = {Let $G=K_\{n_1,n_2,\ldots ,n_r\}$ be a complete multipartite graph on $[n]$ with $n>r>1$ and $J_G$ being its binomial edge ideal. It is proved that the Castelnuovo-Mumford regularity $\{\rm reg\}(J^t_G)$ is $2t+1$ for any positive integer $t$.},
author = {Wang, Hong, Tang, Zhongming},
journal = {Czechoslovak Mathematical Journal},
keywords = {Castelnuovo-Mumford regularity; binomial edge ideal; multipartite graph},
language = {eng},
number = {3},
pages = {793-810},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Regularity of powers of binomial edge ideals of complete multipartite graphs},
url = {http://eudml.org/doc/299102},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Wang, Hong
AU - Tang, Zhongming
TI - Regularity of powers of binomial edge ideals of complete multipartite graphs
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 3
SP - 793
EP - 810
AB - Let $G=K_{n_1,n_2,\ldots ,n_r}$ be a complete multipartite graph on $[n]$ with $n>r>1$ and $J_G$ being its binomial edge ideal. It is proved that the Castelnuovo-Mumford regularity ${\rm reg}(J^t_G)$ is $2t+1$ for any positive integer $t$.
LA - eng
KW - Castelnuovo-Mumford regularity; binomial edge ideal; multipartite graph
UR - http://eudml.org/doc/299102
ER -
References
top- Bruns, W., Vetter, U., 10.1007/BFb0080378, Lecture Notes in Mathematics 1327. Sprin-ger, Berlin (1988). (1988) Zbl0673.13006MR0986492DOI10.1007/BFb0080378
- Conca, A., 10.1016/S0022-4049(96)00061-8, J. Pure Appl. Algebra 121 (1997), 223-231. (1997) Zbl0899.13013MR1477608DOI10.1016/S0022-4049(96)00061-8
- Dao, H., Huneke, C., Schweig, J., 10.1007/s10801-012-0391-z, J. Algebr. Comb. 38 (2013), 37-55. (2013) Zbl1307.13021MR3070118DOI10.1007/s10801-012-0391-z
- Eisenbud, D., 10.1007/978-1-4612-5350-1, Graduate Texts in Mathematics 150. Springer, New York (1995). (1995) Zbl0819.13001MR1322960DOI10.1007/978-1-4612-5350-1
- Ene, V., Rinaldo, G., Terai, N., 10.1017/nmj.2021.1, Nagoya Math. J. 246 (2022), 233-255. (2022) Zbl07531012MR4425287DOI10.1017/nmj.2021.1
- Herzog, J., Hibi, T., 10.1007/978-0-85729-106-6, Graduate Texts in Mathematics 260. Springer, London (2011). (2011) Zbl1206.13001MR2724673DOI10.1007/978-0-85729-106-6
- Herzog, J., Hibi, T., Hreinsdóttir, F., Kahle, T., Rauh, J., 10.1016/j.aam.2010.01.003, Adv. Appl. Math. 45 (2010), 317-333. (2010) Zbl1196.13018MR2669070DOI10.1016/j.aam.2010.01.003
- Herzog, J., Hibi, T., Ohsugi, H., 10.1007/978-3-319-95349-6, Graduate Texts in Mathematics 279. Springer, Cham (2018). (2018) Zbl1403.13004MR3838370DOI10.1007/978-3-319-95349-6
- Hoa, L. T., Tam, N. D., 10.1007/s00013-010-0112-6, Arch. Math. 94 (2010), 327-337. (2010) Zbl1191.13032MR2643966DOI10.1007/s00013-010-0112-6
- Jayanthan, A. V., Kumar, A., Sarkar, R., 10.1016/j.jalgebra.2020.08.004, J. Algebra 564 (2020), 98-118. (2020) Zbl1444.13020MR4137693DOI10.1016/j.jalgebra.2020.08.004
- Ohtani, M., 10.1080/00927870903527584, Commun. Algebra 39 (2011), 905-917. (2011) Zbl1225.13028MR2782571DOI10.1080/00927870903527584
- Ohtani, M., 10.1080/00927872.2012.680219, Commun. Algebra 41 (2013), 3858-3867. (2013) Zbl1406.13026MR3169495DOI10.1080/00927872.2012.680219
- Madani, S. Saeedi, Kiani, D., 10.37236/2349, Electron. J. Combin. 19 (2012), Article ID 44, 6 pages. (2012) Zbl1262.13012MR2946102DOI10.37236/2349
- Madani, S. Saeedi, Kiani, D., 10.1016/j.jalgebra.2018.08.027, J. Algebra 515 (2018), 157-172. (2018) Zbl1403.13028MR3859963DOI10.1016/j.jalgebra.2018.08.027
- Schenzel, P., Zafar, S., 10.2478/auom-2014-0043, An. Ştiinţ. Univ. "Ovidius" Constanţa, Ser. Mat. 22 (2014), 217-237. (2014) Zbl1313.05363MR3195706DOI10.2478/auom-2014-0043
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.