On the average behavior of the Fourier coefficients of th symmetric power -function over certain sequences of positive integers
Anubhav Sharma; Ayyadurai Sankaranarayanan
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 3, page 885-901
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSharma, Anubhav, and Sankaranarayanan, Ayyadurai. "On the average behavior of the Fourier coefficients of $j$th symmetric power $L$-function over certain sequences of positive integers." Czechoslovak Mathematical Journal 73.3 (2023): 885-901. <http://eudml.org/doc/299113>.
@article{Sharma2023,
abstract = {We investigate the average behavior of the $n$th normalized Fourier coefficients of the $j$th ($j \ge 2$ be any fixed integer) symmetric power $L$-function (i.e., $L(s,\{\rm sym\}^\{j\}f)$), attached to a primitive holomorphic cusp form $f$ of weight $k$ for the full modular group $SL(2,\mathbb \{Z\})$ over certain sequences of positive integers. Precisely, we prove an asymptotic formula with an error term for the sum \[ S\_j^*:= \sum \_\{a\_\{1\}^\{2\}+a\_\{2\}^\{2\}+a\_\{3\}^\{2\}+a\_\{4\}^\{2\}+a\_\{5\}^\{2\}+a\_\{6\}^\{2\}\le x (a\_\{1\},a\_\{2\},a\_\{3\},a\_\{4\},a\_\{5\},a\_\{6\})\in \mathbb \{Z\}^\{6\}\} \lambda ^\{2\}\_\{\{\rm sym\}^\{j\}f\}(a\_\{1\}^\{2\}+a\_\{2\}^\{2\}+a\_\{3\}^\{2\}+a\_\{4\}^\{2\}+a\_\{5\}^\{2\}+a\_\{6\}^\{2\}), \]
where $x$ is sufficiently large, and \[ L(s,\mathrm \{sym\}^\{j\}f):=\sum \_\{n=1\}^\{\infty \}\frac\{\lambda \_\{\mathrm \{sym\}^\{j\}f\}(n)\}\{n^\{s\}\}. \]
When $j=2$, the error term which we obtain improves the earlier known result.},
author = {Sharma, Anubhav, Sankaranarayanan, Ayyadurai},
journal = {Czechoslovak Mathematical Journal},
keywords = {nonprincipal Dirichlet character; Hölder’s inequality; $j$th symmetric power $L$-function; holomorphic cusp form},
language = {eng},
number = {3},
pages = {885-901},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the average behavior of the Fourier coefficients of $j$th symmetric power $L$-function over certain sequences of positive integers},
url = {http://eudml.org/doc/299113},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Sharma, Anubhav
AU - Sankaranarayanan, Ayyadurai
TI - On the average behavior of the Fourier coefficients of $j$th symmetric power $L$-function over certain sequences of positive integers
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 3
SP - 885
EP - 901
AB - We investigate the average behavior of the $n$th normalized Fourier coefficients of the $j$th ($j \ge 2$ be any fixed integer) symmetric power $L$-function (i.e., $L(s,{\rm sym}^{j}f)$), attached to a primitive holomorphic cusp form $f$ of weight $k$ for the full modular group $SL(2,\mathbb {Z})$ over certain sequences of positive integers. Precisely, we prove an asymptotic formula with an error term for the sum \[ S_j^*:= \sum _{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}\le x (a_{1},a_{2},a_{3},a_{4},a_{5},a_{6})\in \mathbb {Z}^{6}} \lambda ^{2}_{{\rm sym}^{j}f}(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}), \]
where $x$ is sufficiently large, and \[ L(s,\mathrm {sym}^{j}f):=\sum _{n=1}^{\infty }\frac{\lambda _{\mathrm {sym}^{j}f}(n)}{n^{s}}. \]
When $j=2$, the error term which we obtain improves the earlier known result.
LA - eng
KW - nonprincipal Dirichlet character; Hölder’s inequality; $j$th symmetric power $L$-function; holomorphic cusp form
UR - http://eudml.org/doc/299113
ER -
References
top- Bourgain, J., 10.1090/jams/860, J. Am. Math. Soc. 30 (2017), 205-224. (2017) Zbl1352.11065MR3556291DOI10.1090/jams/860
- Deligne, P., 10.1007/BF02684373, Publ. Math., Inst. Hautes Étud. Sci. 43 (1974), 273-307 French. (1974) Zbl0287.14001MR0340258DOI10.1007/BF02684373
- Fomenko, O. M., 10.1007/s10958-006-0086-x, J. Math. Sci., New York 133 (2006), 1749-1755. (2006) Zbl1094.11018MR2119744DOI10.1007/s10958-006-0086-x
- Good, A., 10.1112/S0025579300012377, Mathematika 29 (1982), 278-295. (1982) Zbl0497.10016MR0696884DOI10.1112/S0025579300012377
- Granville, A., Soundararajan, K., Multiplicative number theory: The pretentious approach, Available at https://dms.umontreal.ca/ {andrew/PDF/BookChaps1n2.pdf}.
- He, X., 10.1090/proc/14516, Proc. Am. Math. Soc. 147 (2019), 2847-2856. (2019) Zbl1431.11062MR3973888DOI10.1090/proc/14516
- Heath-Brown, D. R., 10.1093/qmath/29.4.443, Q. J. Math., Oxf. II. Ser. 29 (1978), 443-462. (1978) Zbl0394.10020MR0517737DOI10.1093/qmath/29.4.443
- Ivić, A., Exponent pairs and the zeta-function of Riemann, Stud. Sci. Math. Hung. 15 (1980), 157-181. (1980) Zbl0455.10025MR0681438
- Jiang, Y., Lü, G., 10.4064/aa166-3-2, Acta Arith. 3 (2014), 231-252. (2014) Zbl1323.11023MR3283621DOI10.4064/aa166-3-2
- Jutila, M., Lectures on a Method in the Theory of Exponential Sums, Lectures on Mathematics and Physics. Mathematics. Tata Institute of Fundamental Research 80. Springer, Berlin (1987). (1987) Zbl0671.10031MR0910497
- Krätzel, E., 10.1007/978-3-322-80021-3, Teubner-Texte zur Mathematik 139. B. G. Teubner, Stuttgart (2000). (2000) Zbl0962.11001MR1889901DOI10.1007/978-3-322-80021-3
- Lao, H., 10.1007/s11401-012-0746-8, Chin. Ann. Math., Ser. B 33 (2012), 877-888. (2012) Zbl1279.11052MR2996556DOI10.1007/s11401-012-0746-8
- Lau, Y.-K., Lü, G., 10.1093/qmath/haq012, Q. J. Math. 62 (2011), 687-716. (2011) Zbl1269.11044MR2825478DOI10.1093/qmath/haq012
- Loh, W. K. A., 10.4064/aa-74-1-1-15, Acta Arith. 74 (1996), 1-15. (1996) Zbl0847.11050MR1367574DOI10.4064/aa-74-1-1-15
- Newton, J., Thorne, J. A., 10.1007/s10240-021-00127-3, Publ. Math., Inst. Hautes Étud. Sci. 134 (2021), 1-116. (2021) Zbl07458825MR4349240DOI10.1007/s10240-021-00127-3
- Newton, J., Thorne, J. A., 10.1007/s10240-021-00126-4, Publ. Math., Inst. Hautes Étud. Sci. 134 (2021), 117-152. (2021) Zbl07458826MR4349241DOI10.1007/s10240-021-00126-4
- Sharma, A., Sankaranarayanan, A., Average behavior of the Fourier coefficients of symmetric square -function over some sequence of integers, Integers 22 (2022), Article ID A74, 17 pages. (2022) Zbl07604107MR4467003
- Sharma, A., Sankaranarayanan, A., 10.1007/s40993-022-00319-8, Res. Number Theory 8 (2022), Article ID 19, 13 pages. (2022) Zbl1498.11177MR4392068DOI10.1007/s40993-022-00319-8
- Sharma, A., Sankaranarayanan, A., 10.1007/s12215-022-00740-z, Rend. Circ. Mat. Palermo (2) (2023), 1399-1416. (2023) Zbl07670402MR4559106DOI10.1007/s12215-022-00740-z
- Tang, H., 10.1007/s11401-016-1013-1, Arch. Math. 100 (2013), 123-130. (2013) Zbl1287.11061MR3020126DOI10.1007/s11401-016-1013-1
- Vaughan, R. C., 10.1017/CBO9780511470929, Cambridge Tracts in Mathematics 125. Cambridge University Press, Cambridge (1997). (1997) Zbl0868.11046MR1435742DOI10.1017/CBO9780511470929
- Zhai, S., 10.1016/j.jnt.2013.05.013, J. Number Theory 133 (2013), 3862-3876. (2013) Zbl1295.11041MR3084303DOI10.1016/j.jnt.2013.05.013
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.