On the average behavior of the Fourier coefficients of j th symmetric power L -function over certain sequences of positive integers

Anubhav Sharma; Ayyadurai Sankaranarayanan

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 3, page 885-901
  • ISSN: 0011-4642

Abstract

top
We investigate the average behavior of the n th normalized Fourier coefficients of the j th ( j 2 be any fixed integer) symmetric power L -function (i.e., L ( s , sym j f ) ), attached to a primitive holomorphic cusp form f of weight k for the full modular group S L ( 2 , ) over certain sequences of positive integers. Precisely, we prove an asymptotic formula with an error term for the sum S j * : = a 1 2 + a 2 2 + a 3 2 + a 4 2 + a 5 2 + a 6 2 x ( a 1 , a 2 , a 3 , a 4 , a 5 , a 6 ) 6 λ sym j f 2 ( a 1 2 + a 2 2 + a 3 2 + a 4 2 + a 5 2 + a 6 2 ) , where x is sufficiently large, and L ( s , sym j f ) : = n = 1 λ sym j f ( n ) n s . When j = 2 , the error term which we obtain improves the earlier known result.

How to cite

top

Sharma, Anubhav, and Sankaranarayanan, Ayyadurai. "On the average behavior of the Fourier coefficients of $j$th symmetric power $L$-function over certain sequences of positive integers." Czechoslovak Mathematical Journal 73.3 (2023): 885-901. <http://eudml.org/doc/299113>.

@article{Sharma2023,
abstract = {We investigate the average behavior of the $n$th normalized Fourier coefficients of the $j$th ($j \ge 2$ be any fixed integer) symmetric power $L$-function (i.e., $L(s,\{\rm sym\}^\{j\}f)$), attached to a primitive holomorphic cusp form $f$ of weight $k$ for the full modular group $SL(2,\mathbb \{Z\})$ over certain sequences of positive integers. Precisely, we prove an asymptotic formula with an error term for the sum \[ S\_j^*:= \sum \_\{a\_\{1\}^\{2\}+a\_\{2\}^\{2\}+a\_\{3\}^\{2\}+a\_\{4\}^\{2\}+a\_\{5\}^\{2\}+a\_\{6\}^\{2\}\le x (a\_\{1\},a\_\{2\},a\_\{3\},a\_\{4\},a\_\{5\},a\_\{6\})\in \mathbb \{Z\}^\{6\}\} \lambda ^\{2\}\_\{\{\rm sym\}^\{j\}f\}(a\_\{1\}^\{2\}+a\_\{2\}^\{2\}+a\_\{3\}^\{2\}+a\_\{4\}^\{2\}+a\_\{5\}^\{2\}+a\_\{6\}^\{2\}), \] where $x$ is sufficiently large, and \[ L(s,\mathrm \{sym\}^\{j\}f):=\sum \_\{n=1\}^\{\infty \}\frac\{\lambda \_\{\mathrm \{sym\}^\{j\}f\}(n)\}\{n^\{s\}\}. \] When $j=2$, the error term which we obtain improves the earlier known result.},
author = {Sharma, Anubhav, Sankaranarayanan, Ayyadurai},
journal = {Czechoslovak Mathematical Journal},
keywords = {nonprincipal Dirichlet character; Hölder’s inequality; $j$th symmetric power $L$-function; holomorphic cusp form},
language = {eng},
number = {3},
pages = {885-901},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the average behavior of the Fourier coefficients of $j$th symmetric power $L$-function over certain sequences of positive integers},
url = {http://eudml.org/doc/299113},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Sharma, Anubhav
AU - Sankaranarayanan, Ayyadurai
TI - On the average behavior of the Fourier coefficients of $j$th symmetric power $L$-function over certain sequences of positive integers
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 3
SP - 885
EP - 901
AB - We investigate the average behavior of the $n$th normalized Fourier coefficients of the $j$th ($j \ge 2$ be any fixed integer) symmetric power $L$-function (i.e., $L(s,{\rm sym}^{j}f)$), attached to a primitive holomorphic cusp form $f$ of weight $k$ for the full modular group $SL(2,\mathbb {Z})$ over certain sequences of positive integers. Precisely, we prove an asymptotic formula with an error term for the sum \[ S_j^*:= \sum _{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}\le x (a_{1},a_{2},a_{3},a_{4},a_{5},a_{6})\in \mathbb {Z}^{6}} \lambda ^{2}_{{\rm sym}^{j}f}(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}), \] where $x$ is sufficiently large, and \[ L(s,\mathrm {sym}^{j}f):=\sum _{n=1}^{\infty }\frac{\lambda _{\mathrm {sym}^{j}f}(n)}{n^{s}}. \] When $j=2$, the error term which we obtain improves the earlier known result.
LA - eng
KW - nonprincipal Dirichlet character; Hölder’s inequality; $j$th symmetric power $L$-function; holomorphic cusp form
UR - http://eudml.org/doc/299113
ER -

References

top
  1. Bourgain, J., 10.1090/jams/860, J. Am. Math. Soc. 30 (2017), 205-224. (2017) Zbl1352.11065MR3556291DOI10.1090/jams/860
  2. Deligne, P., 10.1007/BF02684373, Publ. Math., Inst. Hautes Étud. Sci. 43 (1974), 273-307 French. (1974) Zbl0287.14001MR0340258DOI10.1007/BF02684373
  3. Fomenko, O. M., 10.1007/s10958-006-0086-x, J. Math. Sci., New York 133 (2006), 1749-1755. (2006) Zbl1094.11018MR2119744DOI10.1007/s10958-006-0086-x
  4. Good, A., 10.1112/S0025579300012377, Mathematika 29 (1982), 278-295. (1982) Zbl0497.10016MR0696884DOI10.1112/S0025579300012377
  5. Granville, A., Soundararajan, K., Multiplicative number theory: The pretentious approach, Available at https://dms.umontreal.ca/ {andrew/PDF/BookChaps1n2.pdf}. 
  6. He, X., 10.1090/proc/14516, Proc. Am. Math. Soc. 147 (2019), 2847-2856. (2019) Zbl1431.11062MR3973888DOI10.1090/proc/14516
  7. Heath-Brown, D. R., 10.1093/qmath/29.4.443, Q. J. Math., Oxf. II. Ser. 29 (1978), 443-462. (1978) Zbl0394.10020MR0517737DOI10.1093/qmath/29.4.443
  8. Ivić, A., Exponent pairs and the zeta-function of Riemann, Stud. Sci. Math. Hung. 15 (1980), 157-181. (1980) Zbl0455.10025MR0681438
  9. Jiang, Y., Lü, G., 10.4064/aa166-3-2, Acta Arith. 3 (2014), 231-252. (2014) Zbl1323.11023MR3283621DOI10.4064/aa166-3-2
  10. Jutila, M., Lectures on a Method in the Theory of Exponential Sums, Lectures on Mathematics and Physics. Mathematics. Tata Institute of Fundamental Research 80. Springer, Berlin (1987). (1987) Zbl0671.10031MR0910497
  11. Krätzel, E., 10.1007/978-3-322-80021-3, Teubner-Texte zur Mathematik 139. B. G. Teubner, Stuttgart (2000). (2000) Zbl0962.11001MR1889901DOI10.1007/978-3-322-80021-3
  12. Lao, H., 10.1007/s11401-012-0746-8, Chin. Ann. Math., Ser. B 33 (2012), 877-888. (2012) Zbl1279.11052MR2996556DOI10.1007/s11401-012-0746-8
  13. Lau, Y.-K., Lü, G., 10.1093/qmath/haq012, Q. J. Math. 62 (2011), 687-716. (2011) Zbl1269.11044MR2825478DOI10.1093/qmath/haq012
  14. Loh, W. K. A., 10.4064/aa-74-1-1-15, Acta Arith. 74 (1996), 1-15. (1996) Zbl0847.11050MR1367574DOI10.4064/aa-74-1-1-15
  15. Newton, J., Thorne, J. A., 10.1007/s10240-021-00127-3, Publ. Math., Inst. Hautes Étud. Sci. 134 (2021), 1-116. (2021) Zbl07458825MR4349240DOI10.1007/s10240-021-00127-3
  16. Newton, J., Thorne, J. A., 10.1007/s10240-021-00126-4, Publ. Math., Inst. Hautes Étud. Sci. 134 (2021), 117-152. (2021) Zbl07458826MR4349241DOI10.1007/s10240-021-00126-4
  17. Sharma, A., Sankaranarayanan, A., Average behavior of the Fourier coefficients of symmetric square L -function over some sequence of integers, Integers 22 (2022), Article ID A74, 17 pages. (2022) Zbl07604107MR4467003
  18. Sharma, A., Sankaranarayanan, A., 10.1007/s40993-022-00319-8, Res. Number Theory 8 (2022), Article ID 19, 13 pages. (2022) Zbl1498.11177MR4392068DOI10.1007/s40993-022-00319-8
  19. Sharma, A., Sankaranarayanan, A., 10.1007/s12215-022-00740-z, Rend. Circ. Mat. Palermo (2) (2023), 1399-1416. (2023) Zbl07670402MR4559106DOI10.1007/s12215-022-00740-z
  20. Tang, H., 10.1007/s11401-016-1013-1, Arch. Math. 100 (2013), 123-130. (2013) Zbl1287.11061MR3020126DOI10.1007/s11401-016-1013-1
  21. Vaughan, R. C., 10.1017/CBO9780511470929, Cambridge Tracts in Mathematics 125. Cambridge University Press, Cambridge (1997). (1997) Zbl0868.11046MR1435742DOI10.1017/CBO9780511470929
  22. Zhai, S., 10.1016/j.jnt.2013.05.013, J. Number Theory 133 (2013), 3862-3876. (2013) Zbl1295.11041MR3084303DOI10.1016/j.jnt.2013.05.013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.