A note on average behaviour of the Fourier coefficients of j th symmetric power L -function over certain sparse sequence of positive integers

Youjun Wang

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 2, page 623-636
  • ISSN: 0011-4642

Abstract

top
Let j 2 be a given integer. Let H k * be the set of all normalized primitive holomorphic cusp forms of even integral weight k 2 for the full modulo group SL ( 2 , ) . For f H k * , denote by λ sym j f ( n ) the n th normalized Fourier coefficient of j th symmetric power L -function ( L ( s , sym j f ) ) attached to f . We are interested in the average behaviour of the sum n = a 1 2 + a 2 2 + a 3 2 + a 4 2 + a 5 2 + a 6 2 x ( a 1 , a 2 , a 3 , a 4 , a 5 , a 6 ) 6 λ sym j f 2 ( n ) , where x is sufficiently large, which improves the recent work of A. Sharma and A. Sankaranarayanan (2023).

How to cite

top

Wang, Youjun. "A note on average behaviour of the Fourier coefficients of $j$th symmetric power $L$-function over certain sparse sequence of positive integers." Czechoslovak Mathematical Journal 74.2 (2024): 623-636. <http://eudml.org/doc/299376>.

@article{Wang2024,
abstract = {Let $j\ge 2$ be a given integer. Let $H_\{k\}^\{*\}$ be the set of all normalized primitive holomorphic cusp forms of even integral weight $k\ge 2$ for the full modulo group $\{\rm SL\}(2,\mathbb \{Z\})$. For $f\in H_\{k\}^\{*\}$, denote by $\lambda _\{\{\rm sym\}^\{j\}f\}(n)$ the $n$th normalized Fourier coefficient of $j$th symmetric power $L$-function ($L(s, \{\rm sym\}^\{j\}f)$) attached to $f$. We are interested in the average behaviour of the sum \[ \sum \_\{n=a\_\{1\}^\{2\}+a\_\{2\}^\{2\}+a\_\{3\}^\{2\}+a\_\{4\}^\{2\}+a\_\{5\}^\{2\}+a\_\{6\}^\{2\}\le x \atop (a\_\{1\},a\_\{2\},a\_\{3\},a\_\{4\},a\_\{5\},a\_\{6\})\in \mathbb \{Z\}^\{ 6\}\} \lambda \_\{\{\rm sym\}^\{j\}f\}^\{2\}(n), \] where $x$ is sufficiently large, which improves the recent work of A. Sharma and A. Sankaranarayanan (2023).},
author = {Wang, Youjun},
journal = {Czechoslovak Mathematical Journal},
keywords = {cusp form; Fourier coefficient; symmetric power $L$-function},
language = {eng},
number = {2},
pages = {623-636},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on average behaviour of the Fourier coefficients of $j$th symmetric power $L$-function over certain sparse sequence of positive integers},
url = {http://eudml.org/doc/299376},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Wang, Youjun
TI - A note on average behaviour of the Fourier coefficients of $j$th symmetric power $L$-function over certain sparse sequence of positive integers
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 2
SP - 623
EP - 636
AB - Let $j\ge 2$ be a given integer. Let $H_{k}^{*}$ be the set of all normalized primitive holomorphic cusp forms of even integral weight $k\ge 2$ for the full modulo group ${\rm SL}(2,\mathbb {Z})$. For $f\in H_{k}^{*}$, denote by $\lambda _{{\rm sym}^{j}f}(n)$ the $n$th normalized Fourier coefficient of $j$th symmetric power $L$-function ($L(s, {\rm sym}^{j}f)$) attached to $f$. We are interested in the average behaviour of the sum \[ \sum _{n=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}\le x \atop (a_{1},a_{2},a_{3},a_{4},a_{5},a_{6})\in \mathbb {Z}^{ 6}} \lambda _{{\rm sym}^{j}f}^{2}(n), \] where $x$ is sufficiently large, which improves the recent work of A. Sharma and A. Sankaranarayanan (2023).
LA - eng
KW - cusp form; Fourier coefficient; symmetric power $L$-function
UR - http://eudml.org/doc/299376
ER -

References

top
  1. Bourgain, J., 10.1090/jams/860, J. Am. Math. Soc. 30 (2017), 205-224. (2017) Zbl1352.11065MR3556291DOI10.1090/jams/860
  2. Deligne, P., La conjecture de Weil. I, Usp. Mat. Nauk 30 (1975), 159-190 Russian. (1975) Zbl0314.14007MR0387282
  3. Fomenko, O. M., 10.1007/s10958-006-0086-x, Zap. Nauchn. Semin. POMI 314 (2004), 247-256 Russian. (2004) Zbl1094.11018MR2119744DOI10.1007/s10958-006-0086-x
  4. Fomenko, O. M., 10.1090/S1061-0022-08-01024-8, Algebra Anal. 19 (2007), 246-264 Russian. (2007) Zbl1206.11061MR2381948DOI10.1090/S1061-0022-08-01024-8
  5. Good, A., 10.1112/S0025579300012377, Mathematika 29 (1982), 278-295. (1982) Zbl0497.10016MR0696884DOI10.1112/S0025579300012377
  6. Hua, G., 10.1007/s40993-022-00403-z, Res. Number Theory 8 (2022), Article ID 95, 20 pages. (2022) Zbl1497.11101MR4500287DOI10.1007/s40993-022-00403-z
  7. Huang, J., Liu, H., Zhang, D., 10.1515/math-2021-0076, Open Math. 19 (2021), 1007-1017. (2021) Zbl1483.11099MR4306782DOI10.1515/math-2021-0076
  8. Ivić, A., The Riemann Zeta-Function: The Theory of the Riemann Zeta-Function with Applications, John Wiley & Sons, New York (1985). (1985) Zbl0556.10026MR792089
  9. Jiang, Y., Lü, G., 10.4064/aa166-3-2, Acta Arith. 166 (2014), 231-252. (2014) Zbl1323.11023MR3283621DOI10.4064/aa166-3-2
  10. Lau, Y.-K., Lü, G., 10.1093/qmath/haq012, Q. J. Math. 62 (2011), 687-716. (2011) Zbl1269.11044MR2825478DOI10.1093/qmath/haq012
  11. Lin, Y., Nunes, R., Qi, Z., 10.1093/imrn/rnac153, Int. Math. Res. Not. 2023 (2023), 11453-11470. (2023) Zbl07711446MR4609788DOI10.1093/imrn/rnac153
  12. Liu, J., Ye, Y., 10.4310/PAMQ.2007.v3.n2.a4, Pure Appl. Math. Q. 3 (2007), 481-497. (2007) Zbl1246.11152MR2340051DOI10.4310/PAMQ.2007.v3.n2.a4
  13. Sharma, A., Sankaranarayanan, A., 10.1007/s40993-022-00319-8, Res. Number Theory 8 (2022), Article ID 19, 13 pages. (2022) Zbl1498.11177MR4392068DOI10.1007/s40993-022-00319-8
  14. Sharma, A., Sankaranarayanan, A., 10.21136/CMJ.2023.0348-22, Czech. Math. J. 73 (2023), 885-901. (2023) Zbl07729543MR4632863DOI10.21136/CMJ.2023.0348-22
  15. Tang, H., 10.1007/s00013-013-0481-8, Arch. Math. 100 (2013), 123-130. (2013) Zbl1287.11061MR3020126DOI10.1007/s00013-013-0481-8
  16. Tang, H., Wu, J., 10.1016/j.jnt.2016.03.005, J. Number Theory 167 (2016), 147-160. (2016) Zbl1417.11050MR3504040DOI10.1016/j.jnt.2016.03.005
  17. Zhai, S., 10.1016/j.jnt.2013.05.013, J. Number Theory 133 (2013), 3862-3876. (2013) Zbl1295.11041MR3084303DOI10.1016/j.jnt.2013.05.013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.