A note on average behaviour of the Fourier coefficients of th symmetric power -function over certain sparse sequence of positive integers
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 2, page 623-636
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topWang, Youjun. "A note on average behaviour of the Fourier coefficients of $j$th symmetric power $L$-function over certain sparse sequence of positive integers." Czechoslovak Mathematical Journal 74.2 (2024): 623-636. <http://eudml.org/doc/299376>.
@article{Wang2024,
abstract = {Let $j\ge 2$ be a given integer. Let $H_\{k\}^\{*\}$ be the set of all normalized primitive holomorphic cusp forms of even integral weight $k\ge 2$ for the full modulo group $\{\rm SL\}(2,\mathbb \{Z\})$. For $f\in H_\{k\}^\{*\}$, denote by $\lambda _\{\{\rm sym\}^\{j\}f\}(n)$ the $n$th normalized Fourier coefficient of $j$th symmetric power $L$-function ($L(s, \{\rm sym\}^\{j\}f)$) attached to $f$. We are interested in the average behaviour of the sum \[ \sum \_\{n=a\_\{1\}^\{2\}+a\_\{2\}^\{2\}+a\_\{3\}^\{2\}+a\_\{4\}^\{2\}+a\_\{5\}^\{2\}+a\_\{6\}^\{2\}\le x \atop (a\_\{1\},a\_\{2\},a\_\{3\},a\_\{4\},a\_\{5\},a\_\{6\})\in \mathbb \{Z\}^\{ 6\}\} \lambda \_\{\{\rm sym\}^\{j\}f\}^\{2\}(n), \]
where $x$ is sufficiently large, which improves the recent work of A. Sharma and A. Sankaranarayanan (2023).},
author = {Wang, Youjun},
journal = {Czechoslovak Mathematical Journal},
keywords = {cusp form; Fourier coefficient; symmetric power $L$-function},
language = {eng},
number = {2},
pages = {623-636},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on average behaviour of the Fourier coefficients of $j$th symmetric power $L$-function over certain sparse sequence of positive integers},
url = {http://eudml.org/doc/299376},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Wang, Youjun
TI - A note on average behaviour of the Fourier coefficients of $j$th symmetric power $L$-function over certain sparse sequence of positive integers
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 2
SP - 623
EP - 636
AB - Let $j\ge 2$ be a given integer. Let $H_{k}^{*}$ be the set of all normalized primitive holomorphic cusp forms of even integral weight $k\ge 2$ for the full modulo group ${\rm SL}(2,\mathbb {Z})$. For $f\in H_{k}^{*}$, denote by $\lambda _{{\rm sym}^{j}f}(n)$ the $n$th normalized Fourier coefficient of $j$th symmetric power $L$-function ($L(s, {\rm sym}^{j}f)$) attached to $f$. We are interested in the average behaviour of the sum \[ \sum _{n=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}\le x \atop (a_{1},a_{2},a_{3},a_{4},a_{5},a_{6})\in \mathbb {Z}^{ 6}} \lambda _{{\rm sym}^{j}f}^{2}(n), \]
where $x$ is sufficiently large, which improves the recent work of A. Sharma and A. Sankaranarayanan (2023).
LA - eng
KW - cusp form; Fourier coefficient; symmetric power $L$-function
UR - http://eudml.org/doc/299376
ER -
References
top- Bourgain, J., 10.1090/jams/860, J. Am. Math. Soc. 30 (2017), 205-224. (2017) Zbl1352.11065MR3556291DOI10.1090/jams/860
- Deligne, P., La conjecture de Weil. I, Usp. Mat. Nauk 30 (1975), 159-190 Russian. (1975) Zbl0314.14007MR0387282
- Fomenko, O. M., 10.1007/s10958-006-0086-x, Zap. Nauchn. Semin. POMI 314 (2004), 247-256 Russian. (2004) Zbl1094.11018MR2119744DOI10.1007/s10958-006-0086-x
- Fomenko, O. M., 10.1090/S1061-0022-08-01024-8, Algebra Anal. 19 (2007), 246-264 Russian. (2007) Zbl1206.11061MR2381948DOI10.1090/S1061-0022-08-01024-8
- Good, A., 10.1112/S0025579300012377, Mathematika 29 (1982), 278-295. (1982) Zbl0497.10016MR0696884DOI10.1112/S0025579300012377
- Hua, G., 10.1007/s40993-022-00403-z, Res. Number Theory 8 (2022), Article ID 95, 20 pages. (2022) Zbl1497.11101MR4500287DOI10.1007/s40993-022-00403-z
- Huang, J., Liu, H., Zhang, D., 10.1515/math-2021-0076, Open Math. 19 (2021), 1007-1017. (2021) Zbl1483.11099MR4306782DOI10.1515/math-2021-0076
- Ivić, A., The Riemann Zeta-Function: The Theory of the Riemann Zeta-Function with Applications, John Wiley & Sons, New York (1985). (1985) Zbl0556.10026MR792089
- Jiang, Y., Lü, G., 10.4064/aa166-3-2, Acta Arith. 166 (2014), 231-252. (2014) Zbl1323.11023MR3283621DOI10.4064/aa166-3-2
- Lau, Y.-K., Lü, G., 10.1093/qmath/haq012, Q. J. Math. 62 (2011), 687-716. (2011) Zbl1269.11044MR2825478DOI10.1093/qmath/haq012
- Lin, Y., Nunes, R., Qi, Z., 10.1093/imrn/rnac153, Int. Math. Res. Not. 2023 (2023), 11453-11470. (2023) Zbl07711446MR4609788DOI10.1093/imrn/rnac153
- Liu, J., Ye, Y., 10.4310/PAMQ.2007.v3.n2.a4, Pure Appl. Math. Q. 3 (2007), 481-497. (2007) Zbl1246.11152MR2340051DOI10.4310/PAMQ.2007.v3.n2.a4
- Sharma, A., Sankaranarayanan, A., 10.1007/s40993-022-00319-8, Res. Number Theory 8 (2022), Article ID 19, 13 pages. (2022) Zbl1498.11177MR4392068DOI10.1007/s40993-022-00319-8
- Sharma, A., Sankaranarayanan, A., 10.21136/CMJ.2023.0348-22, Czech. Math. J. 73 (2023), 885-901. (2023) Zbl07729543MR4632863DOI10.21136/CMJ.2023.0348-22
- Tang, H., 10.1007/s00013-013-0481-8, Arch. Math. 100 (2013), 123-130. (2013) Zbl1287.11061MR3020126DOI10.1007/s00013-013-0481-8
- Tang, H., Wu, J., 10.1016/j.jnt.2016.03.005, J. Number Theory 167 (2016), 147-160. (2016) Zbl1417.11050MR3504040DOI10.1016/j.jnt.2016.03.005
- Zhai, S., 10.1016/j.jnt.2013.05.013, J. Number Theory 133 (2013), 3862-3876. (2013) Zbl1295.11041MR3084303DOI10.1016/j.jnt.2013.05.013
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.