Fréchet differentiability via partial Fréchet differentiability

Luděk Zajíček

Commentationes Mathematicae Universitatis Carolinae (2023)

  • Volume: 64, Issue: 2, page 185-207
  • ISSN: 0010-2628

Abstract

top
Let X 1 , , X n be Banach spaces and f a real function on X = X 1 × × X n . Let A f be the set of all points x X at which f is partially Fréchet differentiable but is not Fréchet differentiable. Our results imply that if X 1 , , X n - 1 are Asplund spaces and f is continuous (respectively Lipschitz) on X , then A f is a first category set (respectively a σ -upper porous set). We also prove that if X , Y are separable Banach spaces and f : X Y is a Lipschitz mapping, then there exists a σ -upper porous set A X such that f is Fréchet differentiable at every point x X A at which it is Fréchet differentiable along a closed subspace of finite codimension and Gâteaux differentiable. A number of related more general results are also proved.

How to cite

top

Zajíček, Luděk. "Fréchet differentiability via partial Fréchet differentiability." Commentationes Mathematicae Universitatis Carolinae 64.2 (2023): 185-207. <http://eudml.org/doc/299154>.

@article{Zajíček2023,
abstract = {Let $X_1, \dots , X_n$ be Banach spaces and $f$ a real function on $X=X_1 \times \dots \times X_n$. Let $A_f$ be the set of all points $x \in X$ at which $f$ is partially Fréchet differentiable but is not Fréchet differentiable. Our results imply that if $X_1, \dots , X_\{n-1\}$ are Asplund spaces and $f$ is continuous (respectively Lipschitz) on $X$, then $A_f$ is a first category set (respectively a $\sigma $-upper porous set). We also prove that if $X$, $Y$ are separable Banach spaces and $f\colon X \rightarrow Y$ is a Lipschitz mapping, then there exists a $\sigma $-upper porous set $A \subset X$ such that $f$ is Fréchet differentiable at every point $x \in X \setminus A$ at which it is Fréchet differentiable along a closed subspace of finite codimension and Gâteaux differentiable. A number of related more general results are also proved.},
author = {Zajíček, Luděk},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Fréchet differentiability; partial Fréchet differentiability; first category set; Asplund space; $\sigma $-porous set},
language = {eng},
number = {2},
pages = {185-207},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Fréchet differentiability via partial Fréchet differentiability},
url = {http://eudml.org/doc/299154},
volume = {64},
year = {2023},
}

TY - JOUR
AU - Zajíček, Luděk
TI - Fréchet differentiability via partial Fréchet differentiability
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 2
SP - 185
EP - 207
AB - Let $X_1, \dots , X_n$ be Banach spaces and $f$ a real function on $X=X_1 \times \dots \times X_n$. Let $A_f$ be the set of all points $x \in X$ at which $f$ is partially Fréchet differentiable but is not Fréchet differentiable. Our results imply that if $X_1, \dots , X_{n-1}$ are Asplund spaces and $f$ is continuous (respectively Lipschitz) on $X$, then $A_f$ is a first category set (respectively a $\sigma $-upper porous set). We also prove that if $X$, $Y$ are separable Banach spaces and $f\colon X \rightarrow Y$ is a Lipschitz mapping, then there exists a $\sigma $-upper porous set $A \subset X$ such that $f$ is Fréchet differentiable at every point $x \in X \setminus A$ at which it is Fréchet differentiable along a closed subspace of finite codimension and Gâteaux differentiable. A number of related more general results are also proved.
LA - eng
KW - Fréchet differentiability; partial Fréchet differentiability; first category set; Asplund space; $\sigma $-porous set
UR - http://eudml.org/doc/299154
ER -

References

top
  1. Bessis D. N., Clarke F. H., 10.1090/S0002-9947-99-02203-5, Trans. Amer. Math. Soc. 351 (1999), no. 7, 2899–2926. MR1475676DOI10.1090/S0002-9947-99-02203-5
  2. Cúth M., 10.4064/fm219-3-1, Fund. Math. 219 (2012), no. 3, 191–222. Zbl1270.46015MR3001239DOI10.4064/fm219-3-1
  3. Cúth M., 10.4064/fm480-11-2017, Fund. Math. 243 (2018), no. 1, 9–27. MR3835588DOI10.4064/fm480-11-2017
  4. Cúth M., Rmoutil M., 10.1007/s10587-013-0015-3, Czechoslovak Math. J. 63(138) (2013), no. 1, 219–234. MR3035508DOI10.1007/s10587-013-0015-3
  5. Fabian M., Habala P., Hájek P., Montesinos Santalucía V., Pelant J., Zizler V., Functional Analysis and Infinite-dimensional Geometry, CMS Books Math./Ouvrages Math. SMC, 8, Springer, New York, 2001. MR1831176
  6. Gorlenko S. V., Certain differential properties of real functions, Ukrain. Mat. Zh. 29 (1977), no. 2, 246–249, 286 (Russian); translation in Ukrainian Math. J. 29 (1977), no. 2, 185–187. MR0480907
  7. Ilmuradov D. D., 10.1007/BF01056669, Ukrain. Mat. Zh. 46 (1994), no. 7, 842–848 (Russian); translation in Ukrainian Math. J. 46 (1994), no. 7, 922–928. MR1426800DOI10.1007/BF01056669
  8. Kechris A. S., Classical Descriptive Set Theory, Grad. Texts in Math., 156, Springer, New York, 1995. Zbl0819.04002MR1321597
  9. Kuratowski K., Topology. Vol. I, Academic Press, New York, Polish Scientific Publishers, Warsaw, 1966. MR0217751
  10. Lau K. S., Weil C. E., 10.1090/S0002-9939-1978-0486354-7, Proc. Amer. Math. Soc. 70 (1978), no. 1, 11–17. MR0486354DOI10.1090/S0002-9939-1978-0486354-7
  11. Lindenstrauss J., Preiss D., Tišer J., Fréchet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces, Ann. of Math. Stud., 179, Princeton University Press, Princeton, 2012. MR2884141
  12. Mykhaylyuk V., Plichko A., 10.4064/cm141-2-3, Colloq. Math. 141 (2015), no. 2, 175–182. MR3404261DOI10.4064/cm141-2-3
  13. Penot J.-P., 10.1007/978-1-4614-4538-8, Grad. Texts in Math., 266, Springer, New York, 2013. MR2986672DOI10.1007/978-1-4614-4538-8
  14. Preiss D., Zajíček L., 10.1007/BF02773371, Israel J. Math. 125 (2001), 1–27. MR1853802DOI10.1007/BF02773371
  15. Saint-Raymond J., Sur les fonctions munies de dérivées partielles, Bull. Sci. Math. (2) 103 (1979), no. 4, 375–378 (French. English summary). MR0548914
  16. Stepanoff W., Sur les conditions de l'existence de la differentielle totale, Mat. Sb. 32 (1925), 511–526 (French). 
  17. Veselý L., Zajíček L., 10.1016/j.jmaa.2012.12.073, J. Math. Anal. Appl. 402 (2013), no. 1, 12–22. MR3023233DOI10.1016/j.jmaa.2012.12.073
  18. Zajíček L., 10.21136/CMJ.1991.102482, Czechoslovak Math. J. 41 (1991), no. 3, 471–489. Zbl0760.46038MR1117801DOI10.21136/CMJ.1991.102482
  19. Zajíček L., 10.1155/AAA.2005.509, Abstr. Appl. Anal. 2005 (2005), no. 5, 509–534. Zbl1098.28003MR2201041DOI10.1155/AAA.2005.509
  20. Zajíček L., Generic Fréchet differentiability on Asplund spaces via a.e. strict differentiability on many lines, J. Convex Anal. 19 (2012), no. 1, 23–48. MR2934114
  21. Zajíček L., Gâteaux and Hadamard differentiability via directional differentiability, J. Convex Anal. 21 (2014), no. 3, 703–713. MR3243814

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.