Fréchet differentiability via partial Fréchet differentiability
Commentationes Mathematicae Universitatis Carolinae (2023)
- Volume: 64, Issue: 2, page 185-207
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topZajíček, Luděk. "Fréchet differentiability via partial Fréchet differentiability." Commentationes Mathematicae Universitatis Carolinae 64.2 (2023): 185-207. <http://eudml.org/doc/299154>.
@article{Zajíček2023,
abstract = {Let $X_1, \dots , X_n$ be Banach spaces and $f$ a real function on $X=X_1 \times \dots \times X_n$. Let $A_f$ be the set of all points $x \in X$ at which $f$ is partially Fréchet differentiable but is not Fréchet differentiable. Our results imply that if $X_1, \dots , X_\{n-1\}$ are Asplund spaces and $f$ is continuous (respectively Lipschitz) on $X$, then $A_f$ is a first category set (respectively a $\sigma $-upper porous set). We also prove that if $X$, $Y$ are separable Banach spaces and $f\colon X \rightarrow Y$ is a Lipschitz mapping, then there exists a $\sigma $-upper porous set $A \subset X$ such that $f$ is Fréchet differentiable at every point $x \in X \setminus A$ at which it is Fréchet differentiable along a closed subspace of finite codimension and Gâteaux differentiable. A number of related more general results are also proved.},
author = {Zajíček, Luděk},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Fréchet differentiability; partial Fréchet differentiability; first category set; Asplund space; $\sigma $-porous set},
language = {eng},
number = {2},
pages = {185-207},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Fréchet differentiability via partial Fréchet differentiability},
url = {http://eudml.org/doc/299154},
volume = {64},
year = {2023},
}
TY - JOUR
AU - Zajíček, Luděk
TI - Fréchet differentiability via partial Fréchet differentiability
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 2
SP - 185
EP - 207
AB - Let $X_1, \dots , X_n$ be Banach spaces and $f$ a real function on $X=X_1 \times \dots \times X_n$. Let $A_f$ be the set of all points $x \in X$ at which $f$ is partially Fréchet differentiable but is not Fréchet differentiable. Our results imply that if $X_1, \dots , X_{n-1}$ are Asplund spaces and $f$ is continuous (respectively Lipschitz) on $X$, then $A_f$ is a first category set (respectively a $\sigma $-upper porous set). We also prove that if $X$, $Y$ are separable Banach spaces and $f\colon X \rightarrow Y$ is a Lipschitz mapping, then there exists a $\sigma $-upper porous set $A \subset X$ such that $f$ is Fréchet differentiable at every point $x \in X \setminus A$ at which it is Fréchet differentiable along a closed subspace of finite codimension and Gâteaux differentiable. A number of related more general results are also proved.
LA - eng
KW - Fréchet differentiability; partial Fréchet differentiability; first category set; Asplund space; $\sigma $-porous set
UR - http://eudml.org/doc/299154
ER -
References
top- Bessis D. N., Clarke F. H., 10.1090/S0002-9947-99-02203-5, Trans. Amer. Math. Soc. 351 (1999), no. 7, 2899–2926. MR1475676DOI10.1090/S0002-9947-99-02203-5
- Cúth M., 10.4064/fm219-3-1, Fund. Math. 219 (2012), no. 3, 191–222. Zbl1270.46015MR3001239DOI10.4064/fm219-3-1
- Cúth M., 10.4064/fm480-11-2017, Fund. Math. 243 (2018), no. 1, 9–27. MR3835588DOI10.4064/fm480-11-2017
- Cúth M., Rmoutil M., 10.1007/s10587-013-0015-3, Czechoslovak Math. J. 63(138) (2013), no. 1, 219–234. MR3035508DOI10.1007/s10587-013-0015-3
- Fabian M., Habala P., Hájek P., Montesinos Santalucía V., Pelant J., Zizler V., Functional Analysis and Infinite-dimensional Geometry, CMS Books Math./Ouvrages Math. SMC, 8, Springer, New York, 2001. MR1831176
- Gorlenko S. V., Certain differential properties of real functions, Ukrain. Mat. Zh. 29 (1977), no. 2, 246–249, 286 (Russian); translation in Ukrainian Math. J. 29 (1977), no. 2, 185–187. MR0480907
- Ilmuradov D. D., 10.1007/BF01056669, Ukrain. Mat. Zh. 46 (1994), no. 7, 842–848 (Russian); translation in Ukrainian Math. J. 46 (1994), no. 7, 922–928. MR1426800DOI10.1007/BF01056669
- Kechris A. S., Classical Descriptive Set Theory, Grad. Texts in Math., 156, Springer, New York, 1995. Zbl0819.04002MR1321597
- Kuratowski K., Topology. Vol. I, Academic Press, New York, Polish Scientific Publishers, Warsaw, 1966. MR0217751
- Lau K. S., Weil C. E., 10.1090/S0002-9939-1978-0486354-7, Proc. Amer. Math. Soc. 70 (1978), no. 1, 11–17. MR0486354DOI10.1090/S0002-9939-1978-0486354-7
- Lindenstrauss J., Preiss D., Tišer J., Fréchet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces, Ann. of Math. Stud., 179, Princeton University Press, Princeton, 2012. MR2884141
- Mykhaylyuk V., Plichko A., 10.4064/cm141-2-3, Colloq. Math. 141 (2015), no. 2, 175–182. MR3404261DOI10.4064/cm141-2-3
- Penot J.-P., 10.1007/978-1-4614-4538-8, Grad. Texts in Math., 266, Springer, New York, 2013. MR2986672DOI10.1007/978-1-4614-4538-8
- Preiss D., Zajíček L., 10.1007/BF02773371, Israel J. Math. 125 (2001), 1–27. MR1853802DOI10.1007/BF02773371
- Saint-Raymond J., Sur les fonctions munies de dérivées partielles, Bull. Sci. Math. (2) 103 (1979), no. 4, 375–378 (French. English summary). MR0548914
- Stepanoff W., Sur les conditions de l'existence de la differentielle totale, Mat. Sb. 32 (1925), 511–526 (French).
- Veselý L., Zajíček L., 10.1016/j.jmaa.2012.12.073, J. Math. Anal. Appl. 402 (2013), no. 1, 12–22. MR3023233DOI10.1016/j.jmaa.2012.12.073
- Zajíček L., 10.21136/CMJ.1991.102482, Czechoslovak Math. J. 41 (1991), no. 3, 471–489. Zbl0760.46038MR1117801DOI10.21136/CMJ.1991.102482
- Zajíček L., 10.1155/AAA.2005.509, Abstr. Appl. Anal. 2005 (2005), no. 5, 509–534. Zbl1098.28003MR2201041DOI10.1155/AAA.2005.509
- Zajíček L., Generic Fréchet differentiability on Asplund spaces via a.e. strict differentiability on many lines, J. Convex Anal. 19 (2012), no. 1, 23–48. MR2934114
- Zajíček L., Gâteaux and Hadamard differentiability via directional differentiability, J. Convex Anal. 21 (2014), no. 3, 703–713. MR3243814
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.