# Fréchet differentiability, strict differentiability and subdifferentiability

Czechoslovak Mathematical Journal (1991)

- Volume: 41, Issue: 3, page 471-489
- ISSN: 0011-4642

## Access Full Article

top## How to cite

topZajíček, Luděk. "Fréchet differentiability, strict differentiability and subdifferentiability." Czechoslovak Mathematical Journal 41.3 (1991): 471-489. <http://eudml.org/doc/13946>.

@article{Zajíček1991,

author = {Zajíček, Luděk},

journal = {Czechoslovak Mathematical Journal},

keywords = {points of Fréchet and strict Fréchet differentiability of mappings between Banach spaces; set of first category; subdifferentiability of scalar valued functions; lower semi-continuous function on an Asplund space},

language = {eng},

number = {3},

pages = {471-489},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {Fréchet differentiability, strict differentiability and subdifferentiability},

url = {http://eudml.org/doc/13946},

volume = {41},

year = {1991},

}

TY - JOUR

AU - Zajíček, Luděk

TI - Fréchet differentiability, strict differentiability and subdifferentiability

JO - Czechoslovak Mathematical Journal

PY - 1991

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 41

IS - 3

SP - 471

EP - 489

LA - eng

KW - points of Fréchet and strict Fréchet differentiability of mappings between Banach spaces; set of first category; subdifferentiability of scalar valued functions; lower semi-continuous function on an Asplund space

UR - http://eudml.org/doc/13946

ER -

## References

top- V. I. Bogačev, S. A. Škarin, On differentiable and Lipschitz mappings between Banach spaces, (in Russian), Matem. Zametki 44 (1988), 567-583. (1988) MR0980578
- J. M. Borwein, D. Preiss, 10.1090/S0002-9947-1987-0902782-7, Trans. Amer. Math. Soc. 303 (1987), 517-527. (1987) Zbl0632.49008MR0902782DOI10.1090/S0002-9947-1987-0902782-7
- N. Bourbaki, Eléments de Mathématique, Variétés différentielles et analytiques, Paris 1967, 1971. (1967) Zbl0171.22004
- H. Cartan, Calcul différentiel, Formes différentielles, Paris 1967. (1967) Zbl0156.36102MR0223194
- M. Fabian, N. V. Zhivkov, A characterization of Asplund spaces with the help of local $\u03f5$-supports of Ekeland and Lebourg, C. R. Acad. Bulgare Sci. 38 (1985), 671 - 674. (1985) Zbl0577.46012MR0805439
- S. Fitzpatrick, Separably related sets and the Radon-Nikodým property, Illinois J. Math. 29 (1985), 229-247. (1985) Zbl0546.46009MR0784521
- J. R. Giles, 10.1017/S1446788700024472, J. Austral. Math. Soc. (Series A) 32 (1982), 134-144. (1982) Zbl0486.46019MR0643437DOI10.1017/S1446788700024472
- P. S. Kenderov, Monotone operations in Asplund spaces, C. R. Acad. Bulgare Sci. 30 (1977), 963-964. (1977) Zbl0377.47036MR0463981
- K. Kuratowski, Topology, Vol. I, New York, 1966. (1966) Zbl0158.40901MR0217751
- A. Nijenhuis, 10.2307/2319298, Amer. Math. Monthly 81 (1974), 969-980. (1974) Zbl0296.58002MR0360958DOI10.2307/2319298
- R. R. Phelps, Convex functions, monotone operators and differentiability, Lect. Notes in Math. 1364, Springer-Verlag, 1989. (1989) Zbl0658.46035MR0984602
- D. Preiss, Gateaux differentiable functions are somewhere Frechet differentiable, Rend. Circ. Mat. di Palermo, Ser. II, 33 (1984), 122-133. (1984) Zbl0573.46024MR0743214
- R. T. Rockafellar, The theory of subgradients and its applications to problems of optimization, Heldermann, Berlin, 1981. (1981) Zbl0462.90052MR0623763
- L. Veselý, L. Zajíček, Delta-convex mappings between Banach spaces and applications, Dissertationes Mathematicae 289, Warszawa 1989, 48 pp. (1989) Zbl0685.46027MR1016045
- L. Zajíček, A generalization of an Ekeland-Lebourg theorem and the differentiability of distance functions, Proc. 11th Winter School, Suppl. Rend. Circ. Mat. di Palermo, Ser. II, nr. 3 (1984), 403-410. (1984) Zbl0547.46027MR0744405
- L. Zajíček, Strict differentiability via differentiability, Acta Univ. Carolinae 28 (1987), 157-159. (1987) MR0932752

## Citations in EuDML Documents

top- John R. Giles, Scott Sciffer, Fréchet directional differentiability and Fréchet differentiability
- , Abstracts of theses in mathematics
- Marek Cúth, Martin Rmoutil, $\sigma $-porosity is separably determined
- Luděk Zajíček, Remarks on Fréchet differentiability of pointwise Lipschitz, cone-monotone and quasiconvex functions

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.