Duality for a fractional variational formulation using -approximated method
Sony Khatri; Ashish Kumar Prasad
Kybernetika (2023)
- Volume: 59, Issue: 5, page 700-722
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topKhatri, Sony, and Prasad, Ashish Kumar. "Duality for a fractional variational formulation using $\eta $-approximated method." Kybernetika 59.5 (2023): 700-722. <http://eudml.org/doc/299160>.
@article{Khatri2023,
abstract = {The present article explores the way $\eta $-approximated method is applied to substantiate duality results for the fractional variational problems under invexity. $\eta $-approximated dual pair is engineered and a careful study of the original dual pair has been done to establish the duality results for original problems. Moreover, an appropriate example is constructed based on which we can validate the established dual statements. The paper includes several recent results as special cases.},
author = {Khatri, Sony, Prasad, Ashish Kumar},
journal = {Kybernetika},
keywords = {duality; variational problem; optimal solution},
language = {eng},
number = {5},
pages = {700-722},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Duality for a fractional variational formulation using $\eta $-approximated method},
url = {http://eudml.org/doc/299160},
volume = {59},
year = {2023},
}
TY - JOUR
AU - Khatri, Sony
AU - Prasad, Ashish Kumar
TI - Duality for a fractional variational formulation using $\eta $-approximated method
JO - Kybernetika
PY - 2023
PB - Institute of Information Theory and Automation AS CR
VL - 59
IS - 5
SP - 700
EP - 722
AB - The present article explores the way $\eta $-approximated method is applied to substantiate duality results for the fractional variational problems under invexity. $\eta $-approximated dual pair is engineered and a careful study of the original dual pair has been done to establish the duality results for original problems. Moreover, an appropriate example is constructed based on which we can validate the established dual statements. The paper includes several recent results as special cases.
LA - eng
KW - duality; variational problem; optimal solution
UR - http://eudml.org/doc/299160
ER -
References
top- Antczak, T., , J. Global Optim. 27 (2003), 485-495. MR2012818DOI
- Antczak, T., , Numer. Funct. Anal. Optim, 25 (2004), 423-438. MR2106268DOI
- Antczak, T., , Journal of Mathematical Analysis and Applications 311 (2005), 313-323. MR2165479DOI
- Antczak, T., , J. Optim. Theory Appl, 132 (2007), 71-87. MR2303801DOI
- Antczak, T., , J. Global Optim. 59 (2014), 757-785. MR3226830DOI
- Antczak, T., Michalak, A., , Numer. Funct. Anal. Optim. 38 (2017), 1125-1142. MR3673740DOI
- Bector, C. R., Husain, I., , J. Math. Anal. Appl. 166 (1992), 214-229. MR1159648DOI
- Chandra, S., Craven, B. D., Husain, I., , J. Austral. Math. Soc. 39 (1985), 28-38. MR0786973DOI
- Dorn, W. S., A symmetric dual theorem for quadratic programs., J. Oper. Res. Soc. Japan 2 (1960), 93-97. MR0120038
- Ghosh, M. K., Shaiju, A. J., , J. Optim. Theory Appl. 121 (2004), 301-325. Zbl1099.91023MR2085280DOI
- Hanson, M. A., 10.1016/0022-247X(81)90123-2, J. Math. Anal. Appl. 80 (1981), 545-550. MR0614849DOI10.1016/0022-247X(81)90123-2
- Husain, I., Ahmed, A., Mixed type duality for a variational problem with strong pseudoinvex constraints., Soochow J. Math. 32 (2006), 589-603. MR2265973
- Jayswal, A., Antczak, T., Jha, S., , Int. Trans. Oper. Res. 26 (2019), 2053-2070. MR3939131DOI
- Jha, S., Das, P., Antczak, T., , Yugoslav J. Oper. Res. 30 (2019), 19-43. MR4063168DOI
- Khazafi, K., Rueda, N., Enflo, P., , J. Global Optim. 46 (2010), 111-132. MR2566139DOI
- Li, T., Wang, Y., Liang, Z., Pardalos, P. M., , J. Global Optim. 38 (2007), 405-419. Zbl1175.90317MR2328021DOI
- Mond, B., Chandra, S., Husain, I., , J. Math. Anal. Appl. 134 (1988), 322-328. MR0961341DOI
- Mond, B., Hanson, M. A., , J. Math. Anal. Appl. 18 (1967), 355-364. MR0209943DOI
- Mond, B., Weir, T., Generalized concavity and duality., In: Generalized Concavity in Optimization and Economics, (S. Schaible and W. T. Ziemba, eds.), Academic Press, New York 1981, pp. 263-279. MR0652702
- Mond, B., Husain, I., , J. Austral. Math. Soc. 31 (1989), 108-121. MR1002095DOI
- Nahak, C., Nanda, S., , Optimization 36 (1996), 235-248. MR1419265DOI
- Nahak, C., Behera, N., , J. Control Sci. Engrg. Article ID 497376 (2011), 11 pages. MR2795387DOI
- Zalmai, G. J., , Optimization 30 (1994), 15-51. MR1277803DOI
- Zhian, L., Qingkai, Y., , J. Math. Anal. Appl. 256 (2001), 446-461. MR1821749DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.