Duality for a fractional variational formulation using η -approximated method

Sony Khatri; Ashish Kumar Prasad

Kybernetika (2023)

  • Volume: 59, Issue: 5, page 700-722
  • ISSN: 0023-5954

Abstract

top
The present article explores the way η -approximated method is applied to substantiate duality results for the fractional variational problems under invexity. η -approximated dual pair is engineered and a careful study of the original dual pair has been done to establish the duality results for original problems. Moreover, an appropriate example is constructed based on which we can validate the established dual statements. The paper includes several recent results as special cases.

How to cite

top

Khatri, Sony, and Prasad, Ashish Kumar. "Duality for a fractional variational formulation using $\eta $-approximated method." Kybernetika 59.5 (2023): 700-722. <http://eudml.org/doc/299160>.

@article{Khatri2023,
abstract = {The present article explores the way $\eta $-approximated method is applied to substantiate duality results for the fractional variational problems under invexity. $\eta $-approximated dual pair is engineered and a careful study of the original dual pair has been done to establish the duality results for original problems. Moreover, an appropriate example is constructed based on which we can validate the established dual statements. The paper includes several recent results as special cases.},
author = {Khatri, Sony, Prasad, Ashish Kumar},
journal = {Kybernetika},
keywords = {duality; variational problem; optimal solution},
language = {eng},
number = {5},
pages = {700-722},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Duality for a fractional variational formulation using $\eta $-approximated method},
url = {http://eudml.org/doc/299160},
volume = {59},
year = {2023},
}

TY - JOUR
AU - Khatri, Sony
AU - Prasad, Ashish Kumar
TI - Duality for a fractional variational formulation using $\eta $-approximated method
JO - Kybernetika
PY - 2023
PB - Institute of Information Theory and Automation AS CR
VL - 59
IS - 5
SP - 700
EP - 722
AB - The present article explores the way $\eta $-approximated method is applied to substantiate duality results for the fractional variational problems under invexity. $\eta $-approximated dual pair is engineered and a careful study of the original dual pair has been done to establish the duality results for original problems. Moreover, an appropriate example is constructed based on which we can validate the established dual statements. The paper includes several recent results as special cases.
LA - eng
KW - duality; variational problem; optimal solution
UR - http://eudml.org/doc/299160
ER -

References

top
  1. Antczak, T., , J. Global Optim. 27 (2003), 485-495. MR2012818DOI
  2. Antczak, T., , Numer. Funct. Anal. Optim, 25 (2004), 423-438. MR2106268DOI
  3. Antczak, T., , Journal of Mathematical Analysis and Applications 311 (2005), 313-323. MR2165479DOI
  4. Antczak, T., , J. Optim. Theory Appl, 132 (2007), 71-87. MR2303801DOI
  5. Antczak, T., , J. Global Optim. 59 (2014), 757-785. MR3226830DOI
  6. Antczak, T., Michalak, A., , Numer. Funct. Anal. Optim. 38 (2017), 1125-1142. MR3673740DOI
  7. Bector, C. R., Husain, I., , J. Math. Anal. Appl. 166 (1992), 214-229. MR1159648DOI
  8. Chandra, S., Craven, B. D., Husain, I., , J. Austral. Math. Soc. 39 (1985), 28-38. MR0786973DOI
  9. Dorn, W. S., A symmetric dual theorem for quadratic programs., J. Oper. Res. Soc. Japan 2 (1960), 93-97. MR0120038
  10. Ghosh, M. K., Shaiju, A. J., , J. Optim. Theory Appl. 121 (2004), 301-325. Zbl1099.91023MR2085280DOI
  11. Hanson, M. A., 10.1016/0022-247X(81)90123-2, J. Math. Anal. Appl. 80 (1981), 545-550. MR0614849DOI10.1016/0022-247X(81)90123-2
  12. Husain, I., Ahmed, A., Mixed type duality for a variational problem with strong pseudoinvex constraints., Soochow J. Math. 32 (2006), 589-603. MR2265973
  13. Jayswal, A., Antczak, T., Jha, S., , Int. Trans. Oper. Res. 26 (2019), 2053-2070. MR3939131DOI
  14. Jha, S., Das, P., Antczak, T., , Yugoslav J. Oper. Res. 30 (2019), 19-43. MR4063168DOI
  15. Khazafi, K., Rueda, N., Enflo, P., , J. Global Optim. 46 (2010), 111-132. MR2566139DOI
  16. Li, T., Wang, Y., Liang, Z., Pardalos, P. M., , J. Global Optim. 38 (2007), 405-419. Zbl1175.90317MR2328021DOI
  17. Mond, B., Chandra, S., Husain, I., , J. Math. Anal. Appl. 134 (1988), 322-328. MR0961341DOI
  18. Mond, B., Hanson, M. A., , J. Math. Anal. Appl. 18 (1967), 355-364. MR0209943DOI
  19. Mond, B., Weir, T., Generalized concavity and duality., In: Generalized Concavity in Optimization and Economics, (S. Schaible and W. T. Ziemba, eds.), Academic Press, New York 1981, pp. 263-279. MR0652702
  20. Mond, B., Husain, I., , J. Austral. Math. Soc. 31 (1989), 108-121. MR1002095DOI
  21. Nahak, C., Nanda, S., , Optimization 36 (1996), 235-248. MR1419265DOI
  22. Nahak, C., Behera, N., , J. Control Sci. Engrg. Article ID 497376 (2011), 11 pages. MR2795387DOI
  23. Zalmai, G. J., , Optimization 30 (1994), 15-51. MR1277803DOI
  24. Zhian, L., Qingkai, Y., , J. Math. Anal. Appl. 256 (2001), 446-461. MR1821749DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.