Exact l 1 penalty function for nonsmooth multiobjective interval-valued problems

Julie Khatri; Ashish Kumar Prasad

Kybernetika (2024)

  • Volume: 60, Issue: 5, page 652-681
  • ISSN: 0023-5954

Abstract

top
Our objective in this article is to explore the idea of an unconstrained problem using the exact l 1 penalty function for the nonsmooth multiobjective interval-valued problem (MIVP) having inequality and equality constraints. First of all, we figure out the KKT-type optimality conditions for the problem (MIVP). Next, we establish the equivalence between the set of weak LU-efficient solutions to the problem (MIVP) and the penalized problem (MIVP ρ ) with the exact l 1 penalty function. The utility of this transformation lies in the fact that it converts constrained problems to unconstrained ones. To accurately predict the applicability of the results presented in the paper, meticulously crafted examples are provided.

How to cite

top

Khatri, Julie, and Prasad, Ashish Kumar. "Exact l$_1$ penalty function for nonsmooth multiobjective interval-valued problems." Kybernetika 60.5 (2024): 652-681. <http://eudml.org/doc/299733>.

@article{Khatri2024,
abstract = {Our objective in this article is to explore the idea of an unconstrained problem using the exact l$_1$ penalty function for the nonsmooth multiobjective interval-valued problem (MIVP) having inequality and equality constraints. First of all, we figure out the KKT-type optimality conditions for the problem (MIVP). Next, we establish the equivalence between the set of weak LU-efficient solutions to the problem (MIVP) and the penalized problem (MIVP$_\rho $) with the exact l$_1$ penalty function. The utility of this transformation lies in the fact that it converts constrained problems to unconstrained ones. To accurately predict the applicability of the results presented in the paper, meticulously crafted examples are provided.},
author = {Khatri, Julie, Prasad, Ashish Kumar},
journal = {Kybernetika},
keywords = {interval-valued problem; multiobjective programming; exact l$_1$ penalty function; LU-efficient solution},
language = {eng},
number = {5},
pages = {652-681},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Exact l$_1$ penalty function for nonsmooth multiobjective interval-valued problems},
url = {http://eudml.org/doc/299733},
volume = {60},
year = {2024},
}

TY - JOUR
AU - Khatri, Julie
AU - Prasad, Ashish Kumar
TI - Exact l$_1$ penalty function for nonsmooth multiobjective interval-valued problems
JO - Kybernetika
PY - 2024
PB - Institute of Information Theory and Automation AS CR
VL - 60
IS - 5
SP - 652
EP - 681
AB - Our objective in this article is to explore the idea of an unconstrained problem using the exact l$_1$ penalty function for the nonsmooth multiobjective interval-valued problem (MIVP) having inequality and equality constraints. First of all, we figure out the KKT-type optimality conditions for the problem (MIVP). Next, we establish the equivalence between the set of weak LU-efficient solutions to the problem (MIVP) and the penalized problem (MIVP$_\rho $) with the exact l$_1$ penalty function. The utility of this transformation lies in the fact that it converts constrained problems to unconstrained ones. To accurately predict the applicability of the results presented in the paper, meticulously crafted examples are provided.
LA - eng
KW - interval-valued problem; multiobjective programming; exact l$_1$ penalty function; LU-efficient solution
UR - http://eudml.org/doc/299733
ER -

References

top
  1. Antczak, T., 10.1006/jmaa.2001.7574, J. Math. Anal. Appl. 263 (2001), 355-379. MR1866053DOI10.1006/jmaa.2001.7574
  2. Antczak, T., , Europ. J. Oper. Res. 198 (2009), 29-36. MR2508030DOI
  3. Antczak, T., , In: System Modeling and Optimization Vol. 391 of the series IFIP Advances in Information and Communication Technology (2013) (D. Hömberg and F. Tröltzsch, eds.), pp. 461-470. MR3409747DOI
  4. Antczak, T., , J. Optim. Theory Appl. 176 (2018), 205-224. MR3749691DOI
  5. Antczak, T., , Acta Math. Scientia 37 (2017), 1133-1150. MR3657212DOI
  6. Antczak, T., Farajzadeh, A., , J. Industr. Management Optim. 19(8) (2023), 1-26. MR4562617DOI
  7. Antczak, T., Studniarski, M., , Functional Anal. Optim.37 (2016), 1465-1487. MR3579015DOI
  8. Bazaraa, M. S., Sherali, H. D., Shetty, C. M., Nonlinear Programming: Theory and Algorithms., John Wiley and Sons, New York 1991. Zbl1140.90040MR0533477
  9. Ben-Israel, A., Mond, B., 10.1017/S0334270000005142, J. Austral. Math. Soc. Series B 28 (1986). 1-9. MR0846778DOI10.1017/S0334270000005142
  10. Bertsekas, D. P., Koksal, A. E., Enhanced optimality conditions and exact penalty functions., In: Proc. Allerton Conference, 2000. 
  11. Craven, B. D., 10.1017/S0004972700004895, Bull. Austral. Math. Soc. 24 (1981), 357-366. MR0647362DOI10.1017/S0004972700004895
  12. Clarke, F. H., Optimization and Nonsmooth Analysis., Wiley, New York 1983. MR0709590
  13. Fletcher, R., , Math. Programm. 5 (1973), 129-150. MR0329644DOI
  14. Ha, N. X., Luu, D. V., , Bull. Austral. Math. Soc. 65 (2002), 289-306. MR1898543DOI
  15. Hanson, M. A., 10.1016/0022-247X(81)90123-2, J. Math. Anal. Appl. 80 (1981), 545-550. MR0614849DOI10.1016/0022-247X(81)90123-2
  16. Jayswal, A., Stancu-Minasian, I., Ahmad, I., , Appl. Math. Comput. 218 (2011), 4119-4127. MR2862082DOI
  17. Jayswal, A., Banerjee, J., , J. Oper. Res. Soc. China 4 (2016), 461-481. MR3572965DOI
  18. Mangasarian, O. L., , SIAM J. Control Optim. 23 (1985), 30-37. MR0774027DOI
  19. Martin, D. H., 10.1007/BF00941316, J. Optim. Theory Appl. 42 (1985), 65-76. MR0802390DOI10.1007/BF00941316
  20. Moore, R. E., Interval Analysis., Prentice-Hall, Englewood Cliffs 1966. MR0231516
  21. Moore, R. E., Methods and applications of interval analysis., Soc. Industr. Appl. Math., Philadelphia 1979. MR0551212
  22. Pietrzykowski, T., , SIAM J. Numer. Anal. 6 (1969), 299-304. MR0245183DOI
  23. Reiland, T. W., , Bull. Austral. Math. Soc. 42 (1990), 437-446. MR1083280DOI
  24. Khatri, S., Prasad, A. K., , Kybernetika 59(5) (2023), 700-722. MR4681018DOI
  25. Weir, T., Jeyakumar, V., 10.1017/S0004972700027441, Bull. Austral. Math. Soc. 38 (1988), 177-189. MR0969907DOI10.1017/S0004972700027441
  26. Wu, H. C., , Europ, J. Oper. Res. 176 (2007), 46-59. MR2265133DOI
  27. Wu, H. C., , J. Optim. Theory Appl. 138 (2008), 497-509. MR2429694DOI
  28. Zangwill, W. I., , Management Sci. 13 (1967), 344-358. MR0252040DOI
  29. Zhang, J., , J. Appl. Math. Article ID 641345 (2013). MR3142560DOI
  30. Zhou, H. C., Wang, Y. J., , Fuzzy Inform. Engrg.2 (2009), 1315-1323. MR2429694DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.