Complete monotonicity of the remainder in an asymptotic series related to the psi function
Zhen-Hang Yang; Jing-Feng Tian
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 1, page 337-351
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topYang, Zhen-Hang, and Tian, Jing-Feng. "Complete monotonicity of the remainder in an asymptotic series related to the psi function." Czechoslovak Mathematical Journal 74.1 (2024): 337-351. <http://eudml.org/doc/299215>.
@article{Yang2024,
abstract = {Let $p,q\in \mathbb \{R\}$ with $p-q\ge 0$, $\sigma = \frac\{1\}\{2\} ( p+q-1)$ and $s=\frac\{1\}\{2\} ( 1-p+q)$, and let \[ \mathcal \{D\}\_\{m\} ( x;p,q ) =\mathcal \{D\}\_\{0\} ( x;p,q ) +\sum \_\{k=1\}^\{m\}\frac\{B\_\{2k\} ( s) \}\{2k ( x+\sigma ) ^\{2k\}\} , \]
where \[ \mathcal \{D\}\_\{0\} ( x;p,q ) =\frac\{\psi ( x+p ) +\psi ( x+q ) \}\{2\}-\ln ( x+\sigma ) . \]
We establish the asymptotic expansion \[ \mathcal \{D\}\_\{0\} ( x;p,q ) \sim -\sum \_\{n=1\}^\{\infty \} \frac\{B\_\{2n\} ( s ) \}\{2n ( x+\sigma ) ^\{2n\}\} \quad \text\{as\} \ x\rightarrow \infty , \]
where $B_\{2n\} ( s ) $ stands for the Bernoulli polynomials. Further, we prove that the functions $( -1) ^\{m\}\mathcal \{D\}_\{m\} ( x;p,q )$ and $( -1) ^\{m+1\}\mathcal \{D\}_\{m\} ( x;p,q )$ are completely monotonic in $x$ on $( -\sigma ,\infty )$ for every $m\in \mathbb \{N\}_\{0\}$ if and only if $p-q\in [ 0, \tfrac\{1\}\{2\} ]$ and $p-q=1$, respectively. This not only unifies the two known results but also yields some new results.},
author = {Yang, Zhen-Hang, Tian, Jing-Feng},
journal = {Czechoslovak Mathematical Journal},
keywords = {psi function; asymptotic expansion; complete monotonicity},
language = {eng},
number = {1},
pages = {337-351},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Complete monotonicity of the remainder in an asymptotic series related to the psi function},
url = {http://eudml.org/doc/299215},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Yang, Zhen-Hang
AU - Tian, Jing-Feng
TI - Complete monotonicity of the remainder in an asymptotic series related to the psi function
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 1
SP - 337
EP - 351
AB - Let $p,q\in \mathbb {R}$ with $p-q\ge 0$, $\sigma = \frac{1}{2} ( p+q-1)$ and $s=\frac{1}{2} ( 1-p+q)$, and let \[ \mathcal {D}_{m} ( x;p,q ) =\mathcal {D}_{0} ( x;p,q ) +\sum _{k=1}^{m}\frac{B_{2k} ( s) }{2k ( x+\sigma ) ^{2k}} , \]
where \[ \mathcal {D}_{0} ( x;p,q ) =\frac{\psi ( x+p ) +\psi ( x+q ) }{2}-\ln ( x+\sigma ) . \]
We establish the asymptotic expansion \[ \mathcal {D}_{0} ( x;p,q ) \sim -\sum _{n=1}^{\infty } \frac{B_{2n} ( s ) }{2n ( x+\sigma ) ^{2n}} \quad \text{as} \ x\rightarrow \infty , \]
where $B_{2n} ( s ) $ stands for the Bernoulli polynomials. Further, we prove that the functions $( -1) ^{m}\mathcal {D}_{m} ( x;p,q )$ and $( -1) ^{m+1}\mathcal {D}_{m} ( x;p,q )$ are completely monotonic in $x$ on $( -\sigma ,\infty )$ for every $m\in \mathbb {N}_{0}$ if and only if $p-q\in [ 0, \tfrac{1}{2} ]$ and $p-q=1$, respectively. This not only unifies the two known results but also yields some new results.
LA - eng
KW - psi function; asymptotic expansion; complete monotonicity
UR - http://eudml.org/doc/299215
ER -
References
top- Abramowitz, M., (eds.), I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55. John Wiley, New York (1972). (1972) Zbl0543.33001MR0208798
- Alzer, H., 10.1090/S0025-5718-97-00807-7, Math. Comput. 66 (1997), 373-389. (1997) Zbl0854.33001MR1388887DOI10.1090/S0025-5718-97-00807-7
- Atanassov, R. D., Tsoukrovski, U. V., Some properties of a class of logarithmically completely monotonic functions, C. R. Acad. Bulg. Sci. 41 (1988), 21-23 9999MR99999 0939205 . (1988) Zbl0658.26010MR0939205
- Chen, C.-P., Paris, R. B., 10.1016/j.amc.2014.11.010, Appl. Math. Comput. 250 (2015), 514-529. (2015) Zbl1328.33001MR3285558DOI10.1016/j.amc.2014.11.010
- Fields, J. L., The uniform asymptotic expansion of a ratio of Gamma functions, Constructive Theory of Functions Publishing House of the Bulgarian Academy of Sciences, Sofia (1970), 171-176. (1970) Zbl0263.33002MR0399527
- Frenzen, C. L., 10.1137/0518067, SIAM J. Math. Anal. 18 (1987), 890-896. (1987) Zbl0625.41022MR0883576DOI10.1137/0518067
- Luke, Y. L., On the ratio of two gamma functions, Jñānābha 9-10 (1980), 143-148. (1980) Zbl0504.33001MR0683706
- Olver, F. W. J., Lozier, D. W., Boisvert, R. F., (eds.), C. W. Clark, 10.1023/A:1022915830921, Cambridge University Press, Cambridge (2010). (2010) Zbl1198.00002MR2723248DOI10.1023/A:1022915830921
- Qi, F., Chen, C.-P., 10.1016/j.jmaa.2004.04.026, J. Math. Anal. Appl. 296 (2004), 603-607. (2004) Zbl1046.33001MR2075188DOI10.1016/j.jmaa.2004.04.026
- Schilling, R. L., Song, R., Vondraček, Z., 10.1515/9783110269338, de Gruyter Studies in Mathematics 37. Walter de Gruyter, Berlin (2010). (2010) Zbl1197.33002MR2598208DOI10.1515/9783110269338
- Tian, J.-F., Yang, Z., 10.1016/j.jmaa.2020.124545, J. Math. Anal. Appl. 493 (2021), Article ID 124545, 19 pages. (2021) Zbl1450.33006MR4144294DOI10.1016/j.jmaa.2020.124545
- Widder, D. V., The Laplace Transform, Princeton Mathematical Series 6. Princeton University Press, Princeton (1941). (1941) Zbl0063.08245MR0005923
- Yang, Z.-H., 10.1016/j.jmaa.2016.04.029, J. Math. Anal. Appl. 441 (2016), 549-564. (2016) Zbl1336.33005MR3491542DOI10.1016/j.jmaa.2016.04.029
- Yang, Z.-H., Chu, Y.-M., 10.1155/2015/370979, J. Funct. Spaces 2015 (2015), Article ID 370979, 4 pages. (2015) Zbl1323.26021MR3321607DOI10.1155/2015/370979
- Yang, Z.-H., Tian, J.-F., Ha, M.-H., 10.1090/proc/14917, Proc. Am. Math. Soc. 148 (2020), 2163-2178. (2020) Zbl1435.41034MR4078101DOI10.1090/proc/14917
- Yang, Z., Tian, J.-F., 10.1016/j.jmaa.2022.126649, J. Math. Anal. Appl. 517 (2023), Article ID 126649, 15 pages. (2023) Zbl07595153MR4477953DOI10.1016/j.jmaa.2022.126649
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.