Complete monotonicity of the remainder in an asymptotic series related to the psi function

Zhen-Hang Yang; Jing-Feng Tian

Czechoslovak Mathematical Journal (2024)

  • Issue: 1, page 337-351
  • ISSN: 0011-4642

Abstract

top
Let p , q with p - q 0 , σ = 1 2 ( p + q - 1 ) and s = 1 2 ( 1 - p + q ) , and let 𝒟 m ( x ; p , q ) = 𝒟 0 ( x ; p , q ) + k = 1 m B 2 k ( s ) 2 k ( x + σ ) 2 k , where 𝒟 0 ( x ; p , q ) = ψ ( x + p ) + ψ ( x + q ) 2 - ln ( x + σ ) . We establish the asymptotic expansion 𝒟 0 ( x ; p , q ) - n = 1 B 2 n ( s ) 2 n ( x + σ ) 2 n as x , where B 2 n ( s ) stands for the Bernoulli polynomials. Further, we prove that the functions ( - 1 ) m 𝒟 m ( x ; p , q ) and ( - 1 ) m + 1 𝒟 m ( x ; p , q ) are completely monotonic in x on ( - σ , ) for every m 0 if and only if p - q [ 0 , 1 2 ] and p - q = 1 , respectively. This not only unifies the two known results but also yields some new results.

How to cite

top

Yang, Zhen-Hang, and Tian, Jing-Feng. "Complete monotonicity of the remainder in an asymptotic series related to the psi function." Czechoslovak Mathematical Journal (2024): 337-351. <http://eudml.org/doc/299215>.

@article{Yang2024,
abstract = {Let $p,q\in \mathbb \{R\}$ with $p-q\ge 0$, $\sigma = \frac\{1\}\{2\} ( p+q-1)$ and $s=\frac\{1\}\{2\} ( 1-p+q)$, and let \[ \mathcal \{D\}\_\{m\} ( x;p,q ) =\mathcal \{D\}\_\{0\} ( x;p,q ) +\sum \_\{k=1\}^\{m\}\frac\{B\_\{2k\} ( s) \}\{2k ( x+\sigma ) ^\{2k\}\} , \] where \[ \mathcal \{D\}\_\{0\} ( x;p,q ) =\frac\{\psi ( x+p ) +\psi ( x+q ) \}\{2\}-\ln ( x+\sigma ) . \] We establish the asymptotic expansion \[ \mathcal \{D\}\_\{0\} ( x;p,q ) \sim -\sum \_\{n=1\}^\{\infty \} \frac\{B\_\{2n\} ( s ) \}\{2n ( x+\sigma ) ^\{2n\}\} \quad \text\{as\} \ x\rightarrow \infty , \] where $B_\{2n\} ( s ) $ stands for the Bernoulli polynomials. Further, we prove that the functions $( -1) ^\{m\}\mathcal \{D\}_\{m\} ( x;p,q )$ and $( -1) ^\{m+1\}\mathcal \{D\}_\{m\} ( x;p,q )$ are completely monotonic in $x$ on $( -\sigma ,\infty )$ for every $m\in \mathbb \{N\}_\{0\}$ if and only if $p-q\in [ 0, \tfrac\{1\}\{2\} ]$ and $p-q=1$, respectively. This not only unifies the two known results but also yields some new results.},
author = {Yang, Zhen-Hang, Tian, Jing-Feng},
journal = {Czechoslovak Mathematical Journal},
keywords = {psi function; asymptotic expansion; complete monotonicity},
language = {eng},
number = {1},
pages = {337-351},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Complete monotonicity of the remainder in an asymptotic series related to the psi function},
url = {http://eudml.org/doc/299215},
year = {2024},
}

TY - JOUR
AU - Yang, Zhen-Hang
AU - Tian, Jing-Feng
TI - Complete monotonicity of the remainder in an asymptotic series related to the psi function
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 337
EP - 351
AB - Let $p,q\in \mathbb {R}$ with $p-q\ge 0$, $\sigma = \frac{1}{2} ( p+q-1)$ and $s=\frac{1}{2} ( 1-p+q)$, and let \[ \mathcal {D}_{m} ( x;p,q ) =\mathcal {D}_{0} ( x;p,q ) +\sum _{k=1}^{m}\frac{B_{2k} ( s) }{2k ( x+\sigma ) ^{2k}} , \] where \[ \mathcal {D}_{0} ( x;p,q ) =\frac{\psi ( x+p ) +\psi ( x+q ) }{2}-\ln ( x+\sigma ) . \] We establish the asymptotic expansion \[ \mathcal {D}_{0} ( x;p,q ) \sim -\sum _{n=1}^{\infty } \frac{B_{2n} ( s ) }{2n ( x+\sigma ) ^{2n}} \quad \text{as} \ x\rightarrow \infty , \] where $B_{2n} ( s ) $ stands for the Bernoulli polynomials. Further, we prove that the functions $( -1) ^{m}\mathcal {D}_{m} ( x;p,q )$ and $( -1) ^{m+1}\mathcal {D}_{m} ( x;p,q )$ are completely monotonic in $x$ on $( -\sigma ,\infty )$ for every $m\in \mathbb {N}_{0}$ if and only if $p-q\in [ 0, \tfrac{1}{2} ]$ and $p-q=1$, respectively. This not only unifies the two known results but also yields some new results.
LA - eng
KW - psi function; asymptotic expansion; complete monotonicity
UR - http://eudml.org/doc/299215
ER -

References

top
  1. Abramowitz, M., (eds.), I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55. John Wiley, New York (1972). (1972) Zbl0543.33001MR0208798
  2. Alzer, H., 10.1090/S0025-5718-97-00807-7, Math. Comput. 66 (1997), 373-389. (1997) Zbl0854.33001MR1388887DOI10.1090/S0025-5718-97-00807-7
  3. Atanassov, R. D., Tsoukrovski, U. V., Some properties of a class of logarithmically completely monotonic functions, C. R. Acad. Bulg. Sci. 41 (1988), 21-23 9999MR99999 0939205 . (1988) Zbl0658.26010MR0939205
  4. Chen, C.-P., Paris, R. B., 10.1016/j.amc.2014.11.010, Appl. Math. Comput. 250 (2015), 514-529. (2015) Zbl1328.33001MR3285558DOI10.1016/j.amc.2014.11.010
  5. Fields, J. L., The uniform asymptotic expansion of a ratio of Gamma functions, Constructive Theory of Functions Publishing House of the Bulgarian Academy of Sciences, Sofia (1970), 171-176. (1970) Zbl0263.33002MR0399527
  6. Frenzen, C. L., 10.1137/0518067, SIAM J. Math. Anal. 18 (1987), 890-896. (1987) Zbl0625.41022MR0883576DOI10.1137/0518067
  7. Luke, Y. L., On the ratio of two gamma functions, Jñānābha 9-10 (1980), 143-148. (1980) Zbl0504.33001MR0683706
  8. Olver, F. W. J., Lozier, D. W., Boisvert, R. F., (eds.), C. W. Clark, 10.1023/A:1022915830921, Cambridge University Press, Cambridge (2010). (2010) Zbl1198.00002MR2723248DOI10.1023/A:1022915830921
  9. Qi, F., Chen, C.-P., 10.1016/j.jmaa.2004.04.026, J. Math. Anal. Appl. 296 (2004), 603-607. (2004) Zbl1046.33001MR2075188DOI10.1016/j.jmaa.2004.04.026
  10. Schilling, R. L., Song, R., Vondraček, Z., 10.1515/9783110269338, de Gruyter Studies in Mathematics 37. Walter de Gruyter, Berlin (2010). (2010) Zbl1197.33002MR2598208DOI10.1515/9783110269338
  11. Tian, J.-F., Yang, Z., 10.1016/j.jmaa.2020.124545, J. Math. Anal. Appl. 493 (2021), Article ID 124545, 19 pages. (2021) Zbl1450.33006MR4144294DOI10.1016/j.jmaa.2020.124545
  12. Widder, D. V., The Laplace Transform, Princeton Mathematical Series 6. Princeton University Press, Princeton (1941). (1941) Zbl0063.08245MR0005923
  13. Yang, Z.-H., 10.1016/j.jmaa.2016.04.029, J. Math. Anal. Appl. 441 (2016), 549-564. (2016) Zbl1336.33005MR3491542DOI10.1016/j.jmaa.2016.04.029
  14. Yang, Z.-H., Chu, Y.-M., 10.1155/2015/370979, J. Funct. Spaces 2015 (2015), Article ID 370979, 4 pages. (2015) Zbl1323.26021MR3321607DOI10.1155/2015/370979
  15. Yang, Z.-H., Tian, J.-F., Ha, M.-H., 10.1090/proc/14917, Proc. Am. Math. Soc. 148 (2020), 2163-2178. (2020) Zbl1435.41034MR4078101DOI10.1090/proc/14917
  16. Yang, Z., Tian, J.-F., 10.1016/j.jmaa.2022.126649, J. Math. Anal. Appl. 517 (2023), Article ID 126649, 15 pages. (2023) Zbl07595153MR4477953DOI10.1016/j.jmaa.2022.126649

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.