Displaying similar documents to “Complete monotonicity of the remainder in an asymptotic series related to the psi function”

Involutivity degree of a distribution at superdensity points of its tangencies

Silvano Delladio (2021)

Archivum Mathematicum

Similarity:

Let Φ 1 , ... , Φ k + 1 (with k 1 ) be vector fields of class C k in an open set U N + m , let 𝕄 be a N -dimensional C k submanifold of U and define 𝕋 : = { z 𝕄 : Φ 1 ( z ) , ... , Φ k + 1 ( z ) T z 𝕄 } where T z 𝕄 is the tangent space to 𝕄 at z . Then we expect the following property, which is obvious in the special case when z 0 is an interior point (relative to 𝕄 ) of 𝕋 : If z 0 𝕄 is a ( N + k ) -density point (relative to 𝕄 ) of 𝕋 then all the iterated Lie brackets of order less or equal to k Φ i 1 ( z 0 ) , [ Φ i 1 , Φ i 2 ] ( z 0 ) , [ [ Φ i 1 , Φ i 2 ] , Φ i 3 ] ( z 0 ) , ... ( h , i h k + 1 ) belong to T z 0 𝕄 . Such a property has been proved in [9] for k = 1 and its proof in the...

Admissible spaces for a first order differential equation with delayed argument

Nina A. Chernyavskaya, Lela S. Dorel, Leonid A. Shuster (2019)

Czechoslovak Mathematical Journal

Similarity:

We consider the equation - y ' ( x ) + q ( x ) y ( x - ϕ ( x ) ) = f ( x ) , x , where ϕ and q ( q 1 ) are positive continuous functions for all x and f C ( ) . By a solution of the equation we mean any function y , continuously differentiable everywhere in , which satisfies the equation for all x . We show that under certain additional conditions on the functions ϕ and q , the above equation has a unique solution y , satisfying the inequality y ' C ( ) + q y C ( ) c f C ( ) , where the constant c ( 0 , ) does not depend on the choice of f .

Sum-product theorems and incidence geometry

Mei-Chu Chang, Jozsef Solymosi (2007)

Journal of the European Mathematical Society

Similarity:

In this paper we prove the following theorems in incidence geometry. 1. There is δ > 0 such that for any P 1 , , P 4 , and Q 1 , , Q n 2 , if there are n ( 1 + δ ) / 2 many distinct lines between P i and Q j for all i , j , then P 1 , , P 4 are collinear. If the number of the distinct lines is < c n 1 / 2 then the cross ratio of the four points is algebraic. 2. Given c > 0 , there is δ > 0 such that for any P 1 , P 2 , P 3 2 noncollinear, and Q 1 , , Q n 2 , if there are c n 1 / 2 many distinct lines between P i and Q j for all i , j , then for any P 2 { P 1 , P 2 , P 3 } , we have δ n distinct lines between P and Q j . 3. Given...

Further generalized versions of Ilmanen’s lemma on insertion of C 1 , ω or C loc 1 , ω functions

Václav Kryštof (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The author proved in 2018 that if G is an open subset of a Hilbert space, f 1 , f 2 : G continuous functions and ω a nontrivial modulus such that f 1 f 2 , f 1 is locally semiconvex with modulus ω and f 2 is locally semiconcave with modulus ω , then there exists f C loc 1 , ω ( G ) such that f 1 f f 2 . This is a generalization of Ilmanen’s lemma (which deals with linear modulus and functions on an open subset of n ). Here we extend the mentioned result from Hilbert spaces to some superreflexive spaces, in particular to L p spaces, p [ 2 , ) . We...

𝒞 k -regularity for the ¯ -equation with a support condition

Shaban Khidr, Osama Abdelkader (2017)

Czechoslovak Mathematical Journal

Similarity:

Let D be a 𝒞 d q -convex intersection, d 2 , 0 q n - 1 , in a complex manifold X of complex dimension n , n 2 , and let E be a holomorphic vector bundle of rank N over X . In this paper, 𝒞 k -estimates, k = 2 , 3 , , , for solutions to the ¯ -equation with small loss of smoothness are obtained for E -valued ( 0 , s ) -forms on D when n - q s n . In addition, we solve the ¯ -equation with a support condition in 𝒞 k -spaces. More precisely, we prove that for a ¯ -closed form f in 𝒞 0 , q k ( X D , E ) , 1 q n - 2 , n 3 , with compact support and for ε with 0 < ε < 1 there...

On the r -free values of the polynomial x 2 + y 2 + z 2 + k

Gongrui Chen, Wenxiao Wang (2023)

Czechoslovak Mathematical Journal

Similarity:

Let k be a fixed integer. We study the asymptotic formula of R ( H , r , k ) , which is the number of positive integer solutions 1 x , y , z H such that the polynomial x 2 + y 2 + z 2 + k is r -free. We obtained the asymptotic formula of R ( H , r , k ) for all r 2 . Our result is new even in the case r = 2 . We proved that R ( H , 2 , k ) = c k H 3 + O ( H 9 / 4 + ε ) , where c k > 0 is a constant depending on k . This improves upon the error term O ( H 7 / 3 + ε ) obtained by G.-L. Zhou, Y. Ding (2022).