On feebly nil-clean rings

Marjan Sheibani Abdolyousefi; Neda Pouyan

Czechoslovak Mathematical Journal (2024)

  • Issue: 1, page 87-94
  • ISSN: 0011-4642

Abstract

top
A ring R is feebly nil-clean if for any a R there exist two orthogonal idempotents e , f R and a nilpotent w R such that a = e - f + w . Let R be a 2-primal feebly nil-clean ring. We prove that every matrix ring over R is feebly nil-clean. The result for rings of bounded index is also obtained. These provide many classes of rings over which every matrix is the sum of orthogonal idempotent and nilpotent matrices.

How to cite

top

Sheibani Abdolyousefi, Marjan, and Pouyan, Neda. "On feebly nil-clean rings." Czechoslovak Mathematical Journal (2024): 87-94. <http://eudml.org/doc/299234>.

@article{SheibaniAbdolyousefi2024,
abstract = {A ring $R$ is feebly nil-clean if for any $a\in R$ there exist two orthogonal idempotents $e,f\in R$ and a nilpotent $w\in R$ such that $a=e-f+w$. Let $R$ be a 2-primal feebly nil-clean ring. We prove that every matrix ring over $R$ is feebly nil-clean. The result for rings of bounded index is also obtained. These provide many classes of rings over which every matrix is the sum of orthogonal idempotent and nilpotent matrices.},
author = {Sheibani Abdolyousefi, Marjan, Pouyan, Neda},
journal = {Czechoslovak Mathematical Journal},
keywords = {orthogonal idempotent matrix; nilpotent matrix; matrix ring; feebly nil-clean ring},
language = {eng},
number = {1},
pages = {87-94},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On feebly nil-clean rings},
url = {http://eudml.org/doc/299234},
year = {2024},
}

TY - JOUR
AU - Sheibani Abdolyousefi, Marjan
AU - Pouyan, Neda
TI - On feebly nil-clean rings
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 87
EP - 94
AB - A ring $R$ is feebly nil-clean if for any $a\in R$ there exist two orthogonal idempotents $e,f\in R$ and a nilpotent $w\in R$ such that $a=e-f+w$. Let $R$ be a 2-primal feebly nil-clean ring. We prove that every matrix ring over $R$ is feebly nil-clean. The result for rings of bounded index is also obtained. These provide many classes of rings over which every matrix is the sum of orthogonal idempotent and nilpotent matrices.
LA - eng
KW - orthogonal idempotent matrix; nilpotent matrix; matrix ring; feebly nil-clean ring
UR - http://eudml.org/doc/299234
ER -

References

top
  1. Abyzov, A. N., Mukhametgaliev, I. I., 10.1134/S0001434617010229, Math. Notes 101 (2017), 187-192. (2017) Zbl1365.16024MR3608014DOI10.1134/S0001434617010229
  2. Arora, N., Kundu, S., 10.1142/S0219498817501286, J. Algebra Appl. 16 (2017), Article ID 1750128, 14 pages. (2017) Zbl1368.13006MR3660411DOI10.1142/S0219498817501286
  3. Breaz, S., Călugăreanu, G., Danchev, P., Micu, T., 10.1016/j.laa.2013.08.027, Linear Algebra Appl. 439 (2013), 3115-3119. (2013) Zbl1355.16023MR3116417DOI10.1016/j.laa.2013.08.027
  4. Chen, H., 10.1142/8006, Series in Algebra 11. World Scientific, Hackensack (2011). (2011) Zbl1245.16002MR2752904DOI10.1142/8006
  5. Chen, H., Sheibani, M., 10.1142/S021949881750178X, J. Algebra Appl. 16 (2017), Article ID 1750178, 12 pages. (2017) Zbl1382.16035MR3661645DOI10.1142/S021949881750178X
  6. Diesl, A. J., 10.1016/j.jalgebra.2013.02.020, J. Algebra 383 (2013), 197-211. (2013) Zbl1296.16016MR3037975DOI10.1016/j.jalgebra.2013.02.020
  7. Han, J., Nicholson, W. K., 10.1081/AGB-100002409, Commun. Algebra 29 (2001), 2589-2595. (2001) Zbl0989.16015MR1845131DOI10.1081/AGB-100002409
  8. Hirano, Y., Tominaga, H., 10.1017/S000497270002668X, Bull. Aust. Math. Soc. 37 (1988), 161-164. (1988) Zbl0688.16015MR0930784DOI10.1017/S000497270002668X
  9. Hirano, Y., Tominaga, H., Yaqub, A., 10.18926/mjou/33546, Math. J. Okayama Univ. 30 (1988), 33-40. (1988) Zbl0665.16016MR0976729DOI10.18926/mjou/33546
  10. Koşan, M. T., Lee, T.-K., Zhou, Y., 10.1016/j.laa.2014.02.047, Linear Algebra Appl. 450 (2014), 7-12. (2014) Zbl1303.15016MR3192466DOI10.1016/j.laa.2014.02.047
  11. Koşan, T., Wang, Z., Zhou, Y., 10.1016/j.jpaa.2015.07.009, J. Pure Appl. Algebra 220 (2016), 633-646. (2016) Zbl1335.16026MR3399382DOI10.1016/j.jpaa.2015.07.009
  12. Tominaga, H., Yaqub, A., On generalized n -like rings and related rings, Math. J. Okayama Univ. 23 (1981), 199-202. (1981) Zbl0477.16018MR0638143
  13. Ying, Z., Koşan, T., Zhou, Y., 10.4153/CMB-2016-009-0, Can. Math. Bull. 59 (2016), 661-672. (2016) Zbl1373.16067MR3563747DOI10.4153/CMB-2016-009-0
  14. Yu, H.-P., 10.1017/S0017089500030342, Glasg. Math. J. 37 (1995), 21-31. (1995) Zbl0819.16001MR1316960DOI10.1017/S0017089500030342

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.