On power integral bases for certain pure number fields defined by x 18 - m

Lhoussain El Fadil

Commentationes Mathematicae Universitatis Carolinae (2022)

  • Volume: 62 63, Issue: 1, page 11-19
  • ISSN: 0010-2628

Abstract

top
Let K = ( α ) be a number field generated by a complex root α of a monic irreducible polynomial f ( x ) = x 18 - m , m 1 , is a square free rational integer. We prove that if m 2 or 3 ( mod 4 ) and m ¬ 1 ( mod 9 ) , then the number field K is monogenic. If m 1 ( mod 4 ) or m 1 ( mod 9 ) , then the number field K is not monogenic.

How to cite

top

El Fadil, Lhoussain. "On power integral bases for certain pure number fields defined by $x^{18}-m$." Commentationes Mathematicae Universitatis Carolinae 62 63.1 (2022): 11-19. <http://eudml.org/doc/299262>.

@article{ElFadil2022,
abstract = {Let $K=\{\mathbb \{Q\}\}(\alpha )$ be a number field generated by a complex root $\alpha $ of a monic irreducible polynomial $f(x)=x^\{18\}-m$, $m\ne \mp 1$, is a square free rational integer. We prove that if $ m \equiv 2$ or $3 \{\rm (mod \}\{ 4\})$ and $m\lnot \equiv \mp 1 \{\rm (mod \}\{ 9\})$, then the number field $K$ is monogenic. If $ m \equiv 1 \{\rm (mod \}\{ 4\})$ or $m\equiv 1 \{\rm (mod \}\{ 9\})$, then the number field $K$ is not monogenic.},
author = {El Fadil, Lhoussain},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {power integral base; theorem of Ore; prime ideal factorization},
language = {eng},
number = {1},
pages = {11-19},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On power integral bases for certain pure number fields defined by $x^\{18\}-m$},
url = {http://eudml.org/doc/299262},
volume = {62 63},
year = {2022},
}

TY - JOUR
AU - El Fadil, Lhoussain
TI - On power integral bases for certain pure number fields defined by $x^{18}-m$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2022
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62 63
IS - 1
SP - 11
EP - 19
AB - Let $K={\mathbb {Q}}(\alpha )$ be a number field generated by a complex root $\alpha $ of a monic irreducible polynomial $f(x)=x^{18}-m$, $m\ne \mp 1$, is a square free rational integer. We prove that if $ m \equiv 2$ or $3 {\rm (mod }{ 4})$ and $m\lnot \equiv \mp 1 {\rm (mod }{ 9})$, then the number field $K$ is monogenic. If $ m \equiv 1 {\rm (mod }{ 4})$ or $m\equiv 1 {\rm (mod }{ 9})$, then the number field $K$ is not monogenic.
LA - eng
KW - power integral base; theorem of Ore; prime ideal factorization
UR - http://eudml.org/doc/299262
ER -

References

top
  1. Ahmad S., Nakahara T., Hameed A., 10.1142/S0218196716500259, Int. J. Algebra Comput. 26 (2016), no. 3, 577–583. MR3506350DOI10.1142/S0218196716500259
  2. Ahmad S., Nakahara T., Husnine S. M., Power integral bases for certain pure sextic fields, Int. J. Number Theory 10 (2014), no. 8, 2257–2265. MR3273484
  3. El Fadil L., Computation of a power integral basis of a pure cubic number field, Int. J. Contemp. Math. Sci. 2 (2007), no. 13–16, 601–606. MR2355834
  4. El Fadil L., 10.1142/S0219498820501881, J. Algebra Appl. 19 (2020), no. 10, 2050188, 9 pages. MR4140128DOI10.1142/S0219498820501881
  5. El Fadil L., On power integral bases for certain pure number fields defined by x 24 - m , Studia Sci. Math. Hungar. 57 (2020), no. 3, 397–407. MR4188148
  6. El Fadil L., 10.5486/PMD.2022.9138, Publ. Math. Debrecen 100 (2022), no. 1–2, 219–231. MR4389255DOI10.5486/PMD.2022.9138
  7. El Fadil L., Montes J., Nart E., 10.1142/S0219498812500739, J. Algebra Appl. 11 (2012), no. 4, 1250073, 33 pages. MR2959422DOI10.1142/S0219498812500739
  8. Funakura T., On integral bases of pure quartic fields, Math. J. Okayama Univ. 26 (1984), 27–41. MR0779772
  9. Gaál I., Power integral bases in algebraic number fields, Ann. Univ. Sci. Budapest. Sect. Comput. 18 (1999), 61–87. MR2118246
  10. Gaál I., Diophantine Equations and Power Integral Bases, Theory and Algorithm, Birkhäuser/Springer, Cham, 2019. MR3970246
  11. Gaál I., Olajos P., Pohst M., 10.1080/10586458.2002.10504471, Experiment. Math. 11 (2002), no. 1, 87–90. MR1960303DOI10.1080/10586458.2002.10504471
  12. Gaál I., Remete L., Binomial Thue equations and power integral bases in pure quartic fields, J. Algebra Number Theory Appl. 32 (2014), no. 1, 49–61. 
  13. Gaál I., Remete L., 10.1016/j.jnt.2016.09.009, J. Number Theory 173 (2017), 129–146. MR3581912DOI10.1016/j.jnt.2016.09.009
  14. Hameed A., Nakahara T., Integral bases and relative monogenity of pure octic fields, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 58(106) (2015), no. 4, 419–433. MR3443598
  15. Ore Ö., 10.1007/BF01459087, Math. Ann. 99 (1928), no. 1, 84–117 (German). MR1512440DOI10.1007/BF01459087
  16. Pethö A., Pohst M., 10.4064/aa153-4-4, Acta Arith. 153 (2012), no. 4, 393–414. MR2925379DOI10.4064/aa153-4-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.