On power integral bases for certain pure number fields defined by
Commentationes Mathematicae Universitatis Carolinae (2022)
- Volume: 62 63, Issue: 1, page 11-19
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topEl Fadil, Lhoussain. "On power integral bases for certain pure number fields defined by $x^{18}-m$." Commentationes Mathematicae Universitatis Carolinae 62 63.1 (2022): 11-19. <http://eudml.org/doc/299262>.
@article{ElFadil2022,
abstract = {Let $K=\{\mathbb \{Q\}\}(\alpha )$ be a number field generated by a complex root $\alpha $ of a monic irreducible polynomial $f(x)=x^\{18\}-m$, $m\ne \mp 1$, is a square free rational integer. We prove that if $ m \equiv 2$ or $3 \{\rm (mod \}\{ 4\})$ and $m\lnot \equiv \mp 1 \{\rm (mod \}\{ 9\})$, then the number field $K$ is monogenic. If $ m \equiv 1 \{\rm (mod \}\{ 4\})$ or $m\equiv 1 \{\rm (mod \}\{ 9\})$, then the number field $K$ is not monogenic.},
author = {El Fadil, Lhoussain},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {power integral base; theorem of Ore; prime ideal factorization},
language = {eng},
number = {1},
pages = {11-19},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On power integral bases for certain pure number fields defined by $x^\{18\}-m$},
url = {http://eudml.org/doc/299262},
volume = {62 63},
year = {2022},
}
TY - JOUR
AU - El Fadil, Lhoussain
TI - On power integral bases for certain pure number fields defined by $x^{18}-m$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2022
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62 63
IS - 1
SP - 11
EP - 19
AB - Let $K={\mathbb {Q}}(\alpha )$ be a number field generated by a complex root $\alpha $ of a monic irreducible polynomial $f(x)=x^{18}-m$, $m\ne \mp 1$, is a square free rational integer. We prove that if $ m \equiv 2$ or $3 {\rm (mod }{ 4})$ and $m\lnot \equiv \mp 1 {\rm (mod }{ 9})$, then the number field $K$ is monogenic. If $ m \equiv 1 {\rm (mod }{ 4})$ or $m\equiv 1 {\rm (mod }{ 9})$, then the number field $K$ is not monogenic.
LA - eng
KW - power integral base; theorem of Ore; prime ideal factorization
UR - http://eudml.org/doc/299262
ER -
References
top- Ahmad S., Nakahara T., Hameed A., 10.1142/S0218196716500259, Int. J. Algebra Comput. 26 (2016), no. 3, 577–583. MR3506350DOI10.1142/S0218196716500259
- Ahmad S., Nakahara T., Husnine S. M., Power integral bases for certain pure sextic fields, Int. J. Number Theory 10 (2014), no. 8, 2257–2265. MR3273484
- El Fadil L., Computation of a power integral basis of a pure cubic number field, Int. J. Contemp. Math. Sci. 2 (2007), no. 13–16, 601–606. MR2355834
- El Fadil L., 10.1142/S0219498820501881, J. Algebra Appl. 19 (2020), no. 10, 2050188, 9 pages. MR4140128DOI10.1142/S0219498820501881
- El Fadil L., On power integral bases for certain pure number fields defined by , Studia Sci. Math. Hungar. 57 (2020), no. 3, 397–407. MR4188148
- El Fadil L., 10.5486/PMD.2022.9138, Publ. Math. Debrecen 100 (2022), no. 1–2, 219–231. MR4389255DOI10.5486/PMD.2022.9138
- El Fadil L., Montes J., Nart E., 10.1142/S0219498812500739, J. Algebra Appl. 11 (2012), no. 4, 1250073, 33 pages. MR2959422DOI10.1142/S0219498812500739
- Funakura T., On integral bases of pure quartic fields, Math. J. Okayama Univ. 26 (1984), 27–41. MR0779772
- Gaál I., Power integral bases in algebraic number fields, Ann. Univ. Sci. Budapest. Sect. Comput. 18 (1999), 61–87. MR2118246
- Gaál I., Diophantine Equations and Power Integral Bases, Theory and Algorithm, Birkhäuser/Springer, Cham, 2019. MR3970246
- Gaál I., Olajos P., Pohst M., 10.1080/10586458.2002.10504471, Experiment. Math. 11 (2002), no. 1, 87–90. MR1960303DOI10.1080/10586458.2002.10504471
- Gaál I., Remete L., Binomial Thue equations and power integral bases in pure quartic fields, J. Algebra Number Theory Appl. 32 (2014), no. 1, 49–61.
- Gaál I., Remete L., 10.1016/j.jnt.2016.09.009, J. Number Theory 173 (2017), 129–146. MR3581912DOI10.1016/j.jnt.2016.09.009
- Hameed A., Nakahara T., Integral bases and relative monogenity of pure octic fields, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 58(106) (2015), no. 4, 419–433. MR3443598
- Ore Ö., 10.1007/BF01459087, Math. Ann. 99 (1928), no. 1, 84–117 (German). MR1512440DOI10.1007/BF01459087
- Pethö A., Pohst M., 10.4064/aa153-4-4, Acta Arith. 153 (2012), no. 4, 393–414. MR2925379DOI10.4064/aa153-4-4
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.