Displaying similar documents to “On power integral bases for certain pure number fields defined by x 18 - m

On the Lucas sequence equations Vₙ = kVₘ and Uₙ = kUₘ

Refik Keskin, Zafer Şiar (2013)

Colloquium Mathematicae

Similarity:

Let P and Q be nonzero integers. The sequences of generalized Fibonacci and Lucas numbers are defined by U₀ = 0, U₁ = 1 and U n + 1 = P U - Q U n - 1 for n ≥ 1, and V₀ = 2, V₁ = P and V n + 1 = P V - Q V n - 1 for n ≥ 1, respectively. In this paper, we assume that P ≥ 1, Q is odd, (P,Q) = 1, Vₘ ≠ 1, and V r 1 . We show that there is no integer x such that V = V r V x ² when m ≥ 1 and r is an even integer. Also we completely solve the equation V = V V r x ² for m ≥ 1 and r ≥ 1 when Q ≡ 7 (mod 8) and x is an even integer. Then we show that when P ≡ 3 (mod 4) and...

A q -congruence for a truncated 4 ϕ 3 series

Victor J. W. Guo, Chuanan Wei (2021)

Czechoslovak Mathematical Journal

Similarity:

Let Φ n ( q ) denote the n th cyclotomic polynomial in q . Recently, Guo, Schlosser and Zudilin proved that for any integer n > 1 with n 1 ( mod 4 ) , k = 0 n - 1 ( q - 1 ; q 2 ) k 2 ( q - 2 ; q 4 ) k ( q 2 ; q 2 ) k 2 ( q 4 ; q 4 ) k q 6 k 0 ( mod Φ n ( q ) 2 ) , where ( a ; q ) m = ( 1 - a ) ( 1 - a q ) ( 1 - a q m - 1 ) . In this note, we give a generalization of the above q -congruence to the modulus Φ n ( q ) 3 case. Meanwhile, we give a corresponding q -congruence modulo Φ n ( q ) 2 for n 3 ( mod 4 ) . Our proof is based on the ‘creative microscoping’ method, recently developed by Guo and Zudilin, and a 4 ϕ 3 summation formula.

Polynomials, sign patterns and Descartes' rule of signs

Vladimir Petrov Kostov (2019)

Mathematica Bohemica

Similarity:

By Descartes’ rule of signs, a real degree d polynomial P with all nonvanishing coefficients with c sign changes and p sign preservations in the sequence of its coefficients ( c + p = d ) has pos c positive and ¬ p negative roots, where pos c ( mod 2 ) and ¬ p ( mod 2 ) . For 1 d 3 , for every possible choice of the sequence of signs of coefficients of P (called sign pattern) and for every pair ( pos , neg ) satisfying these conditions there exists a polynomial P with exactly pos positive and exactly ¬ negative roots (all of them simple). For d 4 ...

On the 2 -class group of some number fields with large degree

Mohamed Mahmoud Chems-Eddin, Abdelmalek Azizi, Abdelkader Zekhnini (2021)

Archivum Mathematicum

Similarity:

Let d be an odd square-free integer, m 3 any integer and L m , d : = ( ζ 2 m , d ) . In this paper, we shall determine all the fields L m , d having an odd class number. Furthermore, using the cyclotomic 2 -extensions of some number fields, we compute the rank of the 2 -class group of L m , d whenever the prime divisors of d are congruent to 3 or 5 ( mod 8 ) .

On the distribution of consecutive square-free primitive roots modulo p

Huaning Liu, Hui Dong (2015)

Czechoslovak Mathematical Journal

Similarity:

A positive integer n is called a square-free number if it is not divisible by a perfect square except 1 . Let p be an odd prime. For n with ( n , p ) = 1 , the smallest positive integer f such that n f 1 ( mod p ) is called the exponent of n modulo p . If the exponent of n modulo p is p - 1 , then n is called a primitive root mod p . Let A ( n ) be the characteristic function of the square-free primitive roots modulo p . In this paper we study the distribution n x A ( n ) A ( n + 1 ) , and give an asymptotic formula by using properties of character...

Integral points on the elliptic curve y 2 = x 3 - 4 p 2 x

Hai Yang, Ruiqin Fu (2019)

Czechoslovak Mathematical Journal

Similarity:

Let p be a fixed odd prime. We combine some properties of quadratic and quartic Diophantine equations with elementary number theory methods to determine all integral points on the elliptic curve E : y 2 = x 3 - 4 p 2 x . Further, let N ( p ) denote the number of pairs of integral points ( x , ± y ) on E with y > 0 . We prove that if p 17 , then N ( p ) 4 or 1 depending on whether p 1 ( mod 8 ) or p - 1 ( mod 8 ) .

On a family of elliptic curves of rank at least 2

Kalyan Chakraborty, Richa Sharma (2022)

Czechoslovak Mathematical Journal

Similarity:

Let C m : y 2 = x 3 - m 2 x + p 2 q 2 be a family of elliptic curves over , where m is a positive integer and p , q are distinct odd primes. We study the torsion part and the rank of C m ( ) . More specifically, we prove that the torsion subgroup of C m ( ) is trivial and the -rank of this family is at least 2, whenever m ¬ 0 ( mod 3 ) , m ¬ 0 ( mod 4 ) and m 2 ( mod 64 ) with neither p nor q dividing m .

On monogenity of certain pure number fields of degrees 2 r · 3 k · 7 s

Hamid Ben Yakkou, Jalal Didi (2024)

Mathematica Bohemica

Similarity:

Let K = ( α ) be a pure number field generated by a complex root α of a monic irreducible polynomial F ( x ) = x 2 r · 3 k · 7 s - m [ x ] , where r , k , s are three positive natural integers. The purpose of this paper is to study the monogenity of K . Our results are illustrated by some examples.

On the exponential diophantine equation x y + y x = z z

Xiaoying Du (2017)

Czechoslovak Mathematical Journal

Similarity:

For any positive integer D which is not a square, let ( u 1 , v 1 ) be the least positive integer solution of the Pell equation u 2 - D v 2 = 1 , and let h ( 4 D ) denote the class number of binary quadratic primitive forms of discriminant 4 D . If D satisfies 2 D and v 1 h ( 4 D ) 0 ( mod D ) , then D is called a singular number. In this paper, we prove that if ( x , y , z ) is a positive integer solution of the equation x y + y x = z z with 2 z , then maximum max { x , y , z } < 480000 and both x , y are singular numbers. Thus, one can possibly prove that the equation has no positive integer solutions...

Modular symbols, Eisenstein series, and congruences

Jay Heumann, Vinayak Vatsal (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let E and f be an Eisenstein series and a cusp form, respectively, of the same weight k 2 and of the same level N , both eigenfunctions of the Hecke operators, and both normalized so that a 1 ( f ) = a 1 ( E ) = 1 . The main result we prove is that when E and f are congruent mod a prime 𝔭 (which we take in this paper to be a prime of ¯ lying over a rational prime p &gt; 2 ), the algebraic parts of the special values L ( E , χ , j ) and L ( f , χ , j ) satisfy congruences mod the same prime. More explicitly, we prove that, under certain conditions, ...

The equidistribution of Fourier coefficients of half integral weight modular forms on the plane

Soufiane Mezroui (2020)

Czechoslovak Mathematical Journal

Similarity:

Let f = n = 1 a ( n ) q n S k + 1 / 2 ( N , χ 0 ) be a nonzero cuspidal Hecke eigenform of weight k + 1 2 and the trivial nebentypus χ 0 , where the Fourier coefficients a ( n ) are real. Bruinier and Kohnen conjectured that the signs of a ( n ) are equidistributed. This conjecture was proved to be true by Inam, Wiese and Arias-de-Reyna for the subfamilies { a ( t n 2 ) } n , where t is a squarefree integer such that a ( t ) 0 . Let q and d be natural numbers such that ( d , q ) = 1 . In this work, we show that { a ( t n 2 ) } n is equidistributed over any arithmetic progression n d mod q .