On a probabilistic problem on finite semigroups

Attila Nagy; Csaba Tóth

Commentationes Mathematicae Universitatis Carolinae (2023)

  • Volume: 64, Issue: 4, page 395-410
  • ISSN: 0010-2628

Abstract

top
We deal with the following problem: how does the structure of a finite semigroup S depend on the probability that two elements selected at random from S , with replacement, define the same inner right translation of S . We solve a subcase of this problem. As the main result of the paper, we show how to construct not necessarily finite medial semigroups in which the index of the kernel of the right regular representation equals two.

How to cite

top

Nagy, Attila, and Tóth, Csaba. "On a probabilistic problem on finite semigroups." Commentationes Mathematicae Universitatis Carolinae 64.4 (2023): 395-410. <http://eudml.org/doc/299326>.

@article{Nagy2023,
abstract = {We deal with the following problem: how does the structure of a finite semigroup $S$ depend on the probability that two elements selected at random from $S$, with replacement, define the same inner right translation of $S$. We solve a subcase of this problem. As the main result of the paper, we show how to construct not necessarily finite medial semigroups in which the index of the kernel of the right regular representation equals two.},
author = {Nagy, Attila, Tóth, Csaba},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {semigroup; regular representation of semigroups; medial semigroup},
language = {eng},
number = {4},
pages = {395-410},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On a probabilistic problem on finite semigroups},
url = {http://eudml.org/doc/299326},
volume = {64},
year = {2023},
}

TY - JOUR
AU - Nagy, Attila
AU - Tóth, Csaba
TI - On a probabilistic problem on finite semigroups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 4
SP - 395
EP - 410
AB - We deal with the following problem: how does the structure of a finite semigroup $S$ depend on the probability that two elements selected at random from $S$, with replacement, define the same inner right translation of $S$. We solve a subcase of this problem. As the main result of the paper, we show how to construct not necessarily finite medial semigroups in which the index of the kernel of the right regular representation equals two.
LA - eng
KW - semigroup; regular representation of semigroups; medial semigroup
UR - http://eudml.org/doc/299326
ER -

References

top
  1. Chrislock J. L., 10.1016/0021-8693(69)90013-1, J. Algebra 12 (1969), no. 1, 1–9. Zbl0187.29102MR0237685DOI10.1016/0021-8693(69)90013-1
  2. Clifford A. H., Preston G. B., The Algebraic Theory of Semigroups. Vol. I., Mathematical Surveys, 7, American Mathematical Society, Providence, 1961. MR0132791
  3. Dixon J. D., 10.1007/BF01110210, Math. Z. 110 (1969), 199–205. MR0251758DOI10.1007/BF01110210
  4. Dixon J. D., Pyber L., Seress Á., Shalev A., Residual properties of free groups and probabilistic methods, J. Reine Angew. Math. 556 (2003), 159–172. MR1971144
  5. Eberhard S., Virchow S.-C., 10.1007/s00493-017-3629-5, Combinatorica 39 (2019), no. 2, 273–288. MR3962902DOI10.1007/s00493-017-3629-5
  6. Erdös P., Rényi A., 10.1007/BF02806383, J. Analyse Math. 14 (1965), 127–138. MR0202831DOI10.1007/BF02806383
  7. Gigoń R. S., 10.1515/ms-2017-0287, Math. Slovaca 69 (2019), no. 5, 1033–1036. MR4017388DOI10.1515/ms-2017-0287
  8. Gustafson W. H., 10.1080/00029890.1973.11993437, Amer. Math. Monthly 80 (1973), 1031–1034. MR0327901DOI10.1080/00029890.1973.11993437
  9. Halili R. R., Azemi M., Topological medial semigroups, International Journal of Scientific and Innovative Mathematical Research (IJSIMR) 8 (2020), no. 10, 18–22. 
  10. Kehayopulu N., Tsingelis M., 10.1007/s00233-011-9346-2, Semigroup Forum 84 (2012), no. 3, 562–568. MR2917192DOI10.1007/s00233-011-9346-2
  11. Liebeck M. W., Shalev A., 10.1007/BF01263616, Geom. Dedicata 56 (1995), no. 1, 103–113. MR1338320DOI10.1007/BF01263616
  12. Liebeck M. W., Shalev A., Classical groups, probabilistic methods, and the ( 2 , 3 ) -generation problem, Ann. of Math. (2) 144 (1996), 77–125. MR1405944
  13. Liebeck M. W., Shalev A., 10.1006/jabr.1996.0248, J. Algebra 184 (1996), no. 1, 31–57. MR1402569DOI10.1006/jabr.1996.0248
  14. Nagy A., 10.1007/BF02573565, Semigroup Forum 46 (1993), 187–198. MR1200213DOI10.1007/BF02573565
  15. Nagy A., Right commutative Δ -semigroups, Acta Sci. Math. (Szeged) 66 (2000), no. 1–2, 33–45. MR1768852
  16. Nagy A., Special Classes of Semigroups, Advances in Mathematics (Dordrecht), 1, Kluwer Academic Publishers, Dordrecht, 2001. MR1777265
  17. Nagy A., A supplement to my paper “Right commutative Δ -semigroups", Acta Scie. Math. (Szeged) 71 (2005), no. 1–2, 35–36. MR2160353
  18. Nagy A., 10.1007/s00233-007-9027-3, Semigroup Forum 76 (2008), no. 2, 297–308. MR2377591DOI10.1007/s00233-007-9027-3
  19. Nagy A., 10.1007/s10998-022-00454-w, Period. Math. Hungar. 86 (2023), no. 1, 37–42. MR4554111DOI10.1007/s10998-022-00454-w
  20. Nagy A., Tóth C., On the probability that two elements of a finite semigroup have the same right matrix, Comment. Math. Univ. Carolin. 63 (2022), no. 1, 21–31. MR4445735
  21. Pálfy P. P., Szalay M., On a problem of P. Turán concerning Sylow subgroups, Studies in Pure Mathematics, Birkha̋user, Basel, 1983, pages 531–542. MR0820249
  22. Petrich M., Lectures in Semigroups, John Wiley and Sons, London, 1977. MR0466270
  23. Pyber L., Shalev A., 10.1016/S0764-4442(01)02044-4, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 4, 275–278. MR1854764DOI10.1016/S0764-4442(01)02044-4
  24. Strecker R., Construction of medial semigroups, Comment. Math. Univ. Carolin. 25 (1984), no. 4, 689–697. MR0782018
  25. Tamura N.-S., Nordahl T., 10.1007/BF02572495, Semigroup Forum 28 (1984), no. 1–3, 347–-354. MR0729674DOI10.1007/BF02572495

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.