On a probabilistic problem on finite semigroups
Commentationes Mathematicae Universitatis Carolinae (2023)
- Volume: 64, Issue: 4, page 395-410
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topNagy, Attila, and Tóth, Csaba. "On a probabilistic problem on finite semigroups." Commentationes Mathematicae Universitatis Carolinae 64.4 (2023): 395-410. <http://eudml.org/doc/299326>.
@article{Nagy2023,
abstract = {We deal with the following problem: how does the structure of a finite semigroup $S$ depend on the probability that two elements selected at random from $S$, with replacement, define the same inner right translation of $S$. We solve a subcase of this problem. As the main result of the paper, we show how to construct not necessarily finite medial semigroups in which the index of the kernel of the right regular representation equals two.},
author = {Nagy, Attila, Tóth, Csaba},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {semigroup; regular representation of semigroups; medial semigroup},
language = {eng},
number = {4},
pages = {395-410},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On a probabilistic problem on finite semigroups},
url = {http://eudml.org/doc/299326},
volume = {64},
year = {2023},
}
TY - JOUR
AU - Nagy, Attila
AU - Tóth, Csaba
TI - On a probabilistic problem on finite semigroups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 4
SP - 395
EP - 410
AB - We deal with the following problem: how does the structure of a finite semigroup $S$ depend on the probability that two elements selected at random from $S$, with replacement, define the same inner right translation of $S$. We solve a subcase of this problem. As the main result of the paper, we show how to construct not necessarily finite medial semigroups in which the index of the kernel of the right regular representation equals two.
LA - eng
KW - semigroup; regular representation of semigroups; medial semigroup
UR - http://eudml.org/doc/299326
ER -
References
top- Chrislock J. L., 10.1016/0021-8693(69)90013-1, J. Algebra 12 (1969), no. 1, 1–9. Zbl0187.29102MR0237685DOI10.1016/0021-8693(69)90013-1
- Clifford A. H., Preston G. B., The Algebraic Theory of Semigroups. Vol. I., Mathematical Surveys, 7, American Mathematical Society, Providence, 1961. MR0132791
- Dixon J. D., 10.1007/BF01110210, Math. Z. 110 (1969), 199–205. MR0251758DOI10.1007/BF01110210
- Dixon J. D., Pyber L., Seress Á., Shalev A., Residual properties of free groups and probabilistic methods, J. Reine Angew. Math. 556 (2003), 159–172. MR1971144
- Eberhard S., Virchow S.-C., 10.1007/s00493-017-3629-5, Combinatorica 39 (2019), no. 2, 273–288. MR3962902DOI10.1007/s00493-017-3629-5
- Erdös P., Rényi A., 10.1007/BF02806383, J. Analyse Math. 14 (1965), 127–138. MR0202831DOI10.1007/BF02806383
- Gigoń R. S., 10.1515/ms-2017-0287, Math. Slovaca 69 (2019), no. 5, 1033–1036. MR4017388DOI10.1515/ms-2017-0287
- Gustafson W. H., 10.1080/00029890.1973.11993437, Amer. Math. Monthly 80 (1973), 1031–1034. MR0327901DOI10.1080/00029890.1973.11993437
- Halili R. R., Azemi M., Topological medial semigroups, International Journal of Scientific and Innovative Mathematical Research (IJSIMR) 8 (2020), no. 10, 18–22.
- Kehayopulu N., Tsingelis M., 10.1007/s00233-011-9346-2, Semigroup Forum 84 (2012), no. 3, 562–568. MR2917192DOI10.1007/s00233-011-9346-2
- Liebeck M. W., Shalev A., 10.1007/BF01263616, Geom. Dedicata 56 (1995), no. 1, 103–113. MR1338320DOI10.1007/BF01263616
- Liebeck M. W., Shalev A., Classical groups, probabilistic methods, and the -generation problem, Ann. of Math. (2) 144 (1996), 77–125. MR1405944
- Liebeck M. W., Shalev A., 10.1006/jabr.1996.0248, J. Algebra 184 (1996), no. 1, 31–57. MR1402569DOI10.1006/jabr.1996.0248
- Nagy A., 10.1007/BF02573565, Semigroup Forum 46 (1993), 187–198. MR1200213DOI10.1007/BF02573565
- Nagy A., Right commutative -semigroups, Acta Sci. Math. (Szeged) 66 (2000), no. 1–2, 33–45. MR1768852
- Nagy A., Special Classes of Semigroups, Advances in Mathematics (Dordrecht), 1, Kluwer Academic Publishers, Dordrecht, 2001. MR1777265
- Nagy A., A supplement to my paper “Right commutative -semigroups", Acta Scie. Math. (Szeged) 71 (2005), no. 1–2, 35–36. MR2160353
- Nagy A., 10.1007/s00233-007-9027-3, Semigroup Forum 76 (2008), no. 2, 297–308. MR2377591DOI10.1007/s00233-007-9027-3
- Nagy A., 10.1007/s10998-022-00454-w, Period. Math. Hungar. 86 (2023), no. 1, 37–42. MR4554111DOI10.1007/s10998-022-00454-w
- Nagy A., Tóth C., On the probability that two elements of a finite semigroup have the same right matrix, Comment. Math. Univ. Carolin. 63 (2022), no. 1, 21–31. MR4445735
- Pálfy P. P., Szalay M., On a problem of P. Turán concerning Sylow subgroups, Studies in Pure Mathematics, Birkha̋user, Basel, 1983, pages 531–542. MR0820249
- Petrich M., Lectures in Semigroups, John Wiley and Sons, London, 1977. MR0466270
- Pyber L., Shalev A., 10.1016/S0764-4442(01)02044-4, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 4, 275–278. MR1854764DOI10.1016/S0764-4442(01)02044-4
- Strecker R., Construction of medial semigroups, Comment. Math. Univ. Carolin. 25 (1984), no. 4, 689–697. MR0782018
- Tamura N.-S., Nordahl T., 10.1007/BF02572495, Semigroup Forum 28 (1984), no. 1–3, 347–-354. MR0729674DOI10.1007/BF02572495
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.