A balanced finite-element method for an axisymmetrically loaded thin shell
Applications of Mathematics (2024)
- Issue: 2, page 151-168
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHeuer, Norbert, and Linss, Torsten. "A balanced finite-element method for an axisymmetrically loaded thin shell." Applications of Mathematics (2024): 151-168. <http://eudml.org/doc/299279>.
@article{Heuer2024,
abstract = {We analyse a finite-element discretisation of a differential equation describing an axisymmetrically loaded thin shell. The problem is singularly perturbed when the thickness of the shell becomes small. We prove robust convergence of the method in a balanced norm that captures the layers present in the solution. Numerical results confirm our findings.},
author = {Heuer, Norbert, Linss, Torsten},
journal = {Applications of Mathematics},
keywords = {axisymmetrically loaded thin shell; singular perturbation; balanced norm; layer-adapted meshes; finite element method},
language = {eng},
number = {2},
pages = {151-168},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A balanced finite-element method for an axisymmetrically loaded thin shell},
url = {http://eudml.org/doc/299279},
year = {2024},
}
TY - JOUR
AU - Heuer, Norbert
AU - Linss, Torsten
TI - A balanced finite-element method for an axisymmetrically loaded thin shell
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 2
SP - 151
EP - 168
AB - We analyse a finite-element discretisation of a differential equation describing an axisymmetrically loaded thin shell. The problem is singularly perturbed when the thickness of the shell becomes small. We prove robust convergence of the method in a balanced norm that captures the layers present in the solution. Numerical results confirm our findings.
LA - eng
KW - axisymmetrically loaded thin shell; singular perturbation; balanced norm; layer-adapted meshes; finite element method
UR - http://eudml.org/doc/299279
ER -
References
top- Chapelle, D., Bathe, K.-J., 10.1007/978-3-642-16408-8, Computational Fluid and Solid Mechanics. Springer, Berlin (2011). (2011) Zbl1211.74002MR3234588DOI10.1007/978-3-642-16408-8
- Devloo, P. R. B., Farias, A. M., Gomes, S. M., Gonçalves, J. L., 10.1016/j.camwa.2013.03.015, Comput. Math. Appl. 65 (2013), 1786-1794. (2013) Zbl1391.74243MR3055736DOI10.1016/j.camwa.2013.03.015
- Flügge, W., 10.1007/978-3-642-88291-3, Springer, Berlin (1960). (1960) Zbl0092.41504MR0116598DOI10.1007/978-3-642-88291-3
- Girkmann, K., 10.1007/978-3-7091-2388-1, Springer, Vienna (1956), German. (1956) Zbl0071.39404MR0119567DOI10.1007/978-3-7091-2388-1
- Gol'denveĭzer, A. L., 10.1016/c2013-0-01676-3, International Series of Monographs in Aeronautics and Astronautics. Pergamon Press, Oxford (1961). (1961) Zbl0052.41901MR0135763DOI10.1016/c2013-0-01676-3
- Olsson, R. Gran, Reissner, E., 10.1002/sapm1940191131, J. Math. Phys., Mass. Inst. Tech. 19 (1940), 131-139. (1940) Zbl0024.09002MR0001717DOI10.1002/sapm1940191131
- Heuer, N., Karkulik, M., 10.1137/15M104130, SIAM J. Numer. Anal. 55 (2017), 1218-1242. (2017) Zbl1362.65125MR3654124DOI10.1137/15M104130
- Lin, R., Stynes, M., 10.1137/11083778, SIAM J. Numer. Anal. 50 (2012), 2729-2743. (2012) Zbl1260.65103MR3022240DOI10.1137/11083778
- Linß, T., 10.1007/978-3-642-05134-0, Lecture Notes in Mathematics 1985. Springer, Berlin (2010). (2010) Zbl1202.65120MR2583792DOI10.1007/978-3-642-05134-0
- Miller, J. J. H., O'Riordan, E., Shishkin, G. I., 10.1142/2933, World Scientific, Singapore (1996). (1996) Zbl0915.65097MR1439750DOI10.1142/2933
- Morley, L. S. D., 10.1098/rsta.1976.0023, Philos. Trans. roy. Soc. London, Ser. A 281 (1976), 113-170. (1976) Zbl0319.73040DOI10.1098/rsta.1976.0023
- Niemi, A. H., 10.1137/15M1027590, SIAM J. Sci. Comput. 38 (2016), B440--B457. (2016) Zbl1419.74239MR3513868DOI10.1137/15M1027590
- Niemi, A. H., Babuška, I., Pitkäranta, J., Demkowicz, L., 10.1007/s00366-011-0223-0, Engin. Comput. 28 (2012), 123-134. (2012) DOI10.1007/s00366-011-0223-0
- R. E. O'Malley, Jr., 10.1201/b16933-3, Asymptotic Analysis and the Numerical Solution of Partial Differential Equations Lecture Notes in Pure and Applied Mathematics 130. Marcel Dekker, New York (1991), 3-16. (1991) Zbl0736.65059MR1122414DOI10.1201/b16933-3
- Pitkäranta, J., Babuška, I., Szabó, B., 10.1016/j.camwa.2012.03.008, Comput. Math. Appl. 64 (2012), 48-72. (2012) Zbl1252.74043MR2927141DOI10.1016/j.camwa.2012.03.008
- Reissner, E., 10.1002/sapm193716143, J. Math. Phys. 16 (1937), 43-45 9999JFM99999 63.0755.02. (1937) DOI10.1002/sapm193716143
- Roos, H. G., Lin{ß}, T., 10.1007/s006070050049, Computing 63 (1999), 27-45. (1999) Zbl0931.65085MR1702159DOI10.1007/s006070050049
- Schwab, C., - and -Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics, Numerical Mathematics and Scientific Computation. Clarendon Press, Oxford (1998). (1998) Zbl0910.73003MR1695813
- Shishkin, G. I., Discrete Approximation of Singularly Perturbed Elliptic and Parabolic Equations, Russian Academy of Sciences, Ural Section, Ekaterinburg (1992), Russian. (1992)
- Tin-Loi, F., Pulmano, V. A., Thambiratnam, D., 10.1016/0045-7949(90)90371-8, Comput. Struct. 34 (1990), 281-285. (1990) Zbl0713.73090DOI10.1016/0045-7949(90)90371-8
- Ventsel, E., Krauthammer, T., 10.1201/9780203908723, CRC Press, Boca Raton (2001). (2001) DOI10.1201/9780203908723
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.