A balanced finite-element method for an axisymmetrically loaded thin shell

Norbert Heuer; Torsten Linss

Applications of Mathematics (2024)

  • Issue: 2, page 151-168
  • ISSN: 0862-7940

Abstract

top
We analyse a finite-element discretisation of a differential equation describing an axisymmetrically loaded thin shell. The problem is singularly perturbed when the thickness of the shell becomes small. We prove robust convergence of the method in a balanced norm that captures the layers present in the solution. Numerical results confirm our findings.

How to cite

top

Heuer, Norbert, and Linss, Torsten. "A balanced finite-element method for an axisymmetrically loaded thin shell." Applications of Mathematics (2024): 151-168. <http://eudml.org/doc/299279>.

@article{Heuer2024,
abstract = {We analyse a finite-element discretisation of a differential equation describing an axisymmetrically loaded thin shell. The problem is singularly perturbed when the thickness of the shell becomes small. We prove robust convergence of the method in a balanced norm that captures the layers present in the solution. Numerical results confirm our findings.},
author = {Heuer, Norbert, Linss, Torsten},
journal = {Applications of Mathematics},
keywords = {axisymmetrically loaded thin shell; singular perturbation; balanced norm; layer-adapted meshes; finite element method},
language = {eng},
number = {2},
pages = {151-168},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A balanced finite-element method for an axisymmetrically loaded thin shell},
url = {http://eudml.org/doc/299279},
year = {2024},
}

TY - JOUR
AU - Heuer, Norbert
AU - Linss, Torsten
TI - A balanced finite-element method for an axisymmetrically loaded thin shell
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 2
SP - 151
EP - 168
AB - We analyse a finite-element discretisation of a differential equation describing an axisymmetrically loaded thin shell. The problem is singularly perturbed when the thickness of the shell becomes small. We prove robust convergence of the method in a balanced norm that captures the layers present in the solution. Numerical results confirm our findings.
LA - eng
KW - axisymmetrically loaded thin shell; singular perturbation; balanced norm; layer-adapted meshes; finite element method
UR - http://eudml.org/doc/299279
ER -

References

top
  1. Chapelle, D., Bathe, K.-J., 10.1007/978-3-642-16408-8, Computational Fluid and Solid Mechanics. Springer, Berlin (2011). (2011) Zbl1211.74002MR3234588DOI10.1007/978-3-642-16408-8
  2. Devloo, P. R. B., Farias, A. M., Gomes, S. M., Gonçalves, J. L., 10.1016/j.camwa.2013.03.015, Comput. Math. Appl. 65 (2013), 1786-1794. (2013) Zbl1391.74243MR3055736DOI10.1016/j.camwa.2013.03.015
  3. Flügge, W., 10.1007/978-3-642-88291-3, Springer, Berlin (1960). (1960) Zbl0092.41504MR0116598DOI10.1007/978-3-642-88291-3
  4. Girkmann, K., 10.1007/978-3-7091-2388-1, Springer, Vienna (1956), German. (1956) Zbl0071.39404MR0119567DOI10.1007/978-3-7091-2388-1
  5. Gol'denveĭzer, A. L., 10.1016/c2013-0-01676-3, International Series of Monographs in Aeronautics and Astronautics. Pergamon Press, Oxford (1961). (1961) Zbl0052.41901MR0135763DOI10.1016/c2013-0-01676-3
  6. Olsson, R. Gran, Reissner, E., 10.1002/sapm1940191131, J. Math. Phys., Mass. Inst. Tech. 19 (1940), 131-139. (1940) Zbl0024.09002MR0001717DOI10.1002/sapm1940191131
  7. Heuer, N., Karkulik, M., 10.1137/15M104130, SIAM J. Numer. Anal. 55 (2017), 1218-1242. (2017) Zbl1362.65125MR3654124DOI10.1137/15M104130
  8. Lin, R., Stynes, M., 10.1137/11083778, SIAM J. Numer. Anal. 50 (2012), 2729-2743. (2012) Zbl1260.65103MR3022240DOI10.1137/11083778
  9. Linß, T., 10.1007/978-3-642-05134-0, Lecture Notes in Mathematics 1985. Springer, Berlin (2010). (2010) Zbl1202.65120MR2583792DOI10.1007/978-3-642-05134-0
  10. Miller, J. J. H., O'Riordan, E., Shishkin, G. I., 10.1142/2933, World Scientific, Singapore (1996). (1996) Zbl0915.65097MR1439750DOI10.1142/2933
  11. Morley, L. S. D., 10.1098/rsta.1976.0023, Philos. Trans. roy. Soc. London, Ser. A 281 (1976), 113-170. (1976) Zbl0319.73040DOI10.1098/rsta.1976.0023
  12. Niemi, A. H., 10.1137/15M1027590, SIAM J. Sci. Comput. 38 (2016), B440--B457. (2016) Zbl1419.74239MR3513868DOI10.1137/15M1027590
  13. Niemi, A. H., Babuška, I., Pitkäranta, J., Demkowicz, L., 10.1007/s00366-011-0223-0, Engin. Comput. 28 (2012), 123-134. (2012) DOI10.1007/s00366-011-0223-0
  14. R. E. O'Malley, Jr., 10.1201/b16933-3, Asymptotic Analysis and the Numerical Solution of Partial Differential Equations Lecture Notes in Pure and Applied Mathematics 130. Marcel Dekker, New York (1991), 3-16. (1991) Zbl0736.65059MR1122414DOI10.1201/b16933-3
  15. Pitkäranta, J., Babuška, I., Szabó, B., 10.1016/j.camwa.2012.03.008, Comput. Math. Appl. 64 (2012), 48-72. (2012) Zbl1252.74043MR2927141DOI10.1016/j.camwa.2012.03.008
  16. Reissner, E., 10.1002/sapm193716143, J. Math. Phys. 16 (1937), 43-45 9999JFM99999 63.0755.02. (1937) DOI10.1002/sapm193716143
  17. Roos, H. G., Lin{ß}, T., 10.1007/s006070050049, Computing 63 (1999), 27-45. (1999) Zbl0931.65085MR1702159DOI10.1007/s006070050049
  18. Schwab, C., p - and h p -Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics, Numerical Mathematics and Scientific Computation. Clarendon Press, Oxford (1998). (1998) Zbl0910.73003MR1695813
  19. Shishkin, G. I., Discrete Approximation of Singularly Perturbed Elliptic and Parabolic Equations, Russian Academy of Sciences, Ural Section, Ekaterinburg (1992), Russian. (1992) 
  20. Tin-Loi, F., Pulmano, V. A., Thambiratnam, D., 10.1016/0045-7949(90)90371-8, Comput. Struct. 34 (1990), 281-285. (1990) Zbl0713.73090DOI10.1016/0045-7949(90)90371-8
  21. Ventsel, E., Krauthammer, T., 10.1201/9780203908723, CRC Press, Boca Raton (2001). (2001) DOI10.1201/9780203908723

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.