An approach to solve a fuzzy bi-objective multi-index fixed charge transportation problem

Maroua Hakim; Rachid Zitouni

Kybernetika (2024)

  • Issue: 3, page 271-292
  • ISSN: 0023-5954

Abstract

top
In this paper, we propose a novel approach for solving a fuzzy bi-objective multi-index fixed-charge transportation problem where the aim is to minimize two objectives: the total transportation cost and transportation time. The parameters of the problem, such as fixed cost, variable cost, and transportation time are represented as fuzzy numbers. To extract crisp values from these parameters, a linear ranking function is used. The proposed approach initially separates the main problem into sub-problems. Then, it solves each sub-problem using different algorithms. After that, it determines the Pareto optimal solutions and trade-off pairs. To evaluate the performance of the proposed approach, various numerical problems of different sizes were solved. The results obtained are encouraging and show the efficiency of our approach.

How to cite

top

Hakim, Maroua, and Zitouni, Rachid. "An approach to solve a fuzzy bi-objective multi-index fixed charge transportation problem." Kybernetika (2024): 271-292. <http://eudml.org/doc/299281>.

@article{Hakim2024,
abstract = {In this paper, we propose a novel approach for solving a fuzzy bi-objective multi-index fixed-charge transportation problem where the aim is to minimize two objectives: the total transportation cost and transportation time. The parameters of the problem, such as fixed cost, variable cost, and transportation time are represented as fuzzy numbers. To extract crisp values from these parameters, a linear ranking function is used. The proposed approach initially separates the main problem into sub-problems. Then, it solves each sub-problem using different algorithms. After that, it determines the Pareto optimal solutions and trade-off pairs. To evaluate the performance of the proposed approach, various numerical problems of different sizes were solved. The results obtained are encouraging and show the efficiency of our approach.},
author = {Hakim, Maroua, Zitouni, Rachid},
journal = {Kybernetika},
keywords = {multi-index transportation problem; fixed charge transportation problem; fuzzy mathematics; multi-objective problems},
language = {eng},
number = {3},
pages = {271-292},
publisher = {Institute of Information Theory and Automation AS CR},
title = {An approach to solve a fuzzy bi-objective multi-index fixed charge transportation problem},
url = {http://eudml.org/doc/299281},
year = {2024},
}

TY - JOUR
AU - Hakim, Maroua
AU - Zitouni, Rachid
TI - An approach to solve a fuzzy bi-objective multi-index fixed charge transportation problem
JO - Kybernetika
PY - 2024
PB - Institute of Information Theory and Automation AS CR
IS - 3
SP - 271
EP - 292
AB - In this paper, we propose a novel approach for solving a fuzzy bi-objective multi-index fixed-charge transportation problem where the aim is to minimize two objectives: the total transportation cost and transportation time. The parameters of the problem, such as fixed cost, variable cost, and transportation time are represented as fuzzy numbers. To extract crisp values from these parameters, a linear ranking function is used. The proposed approach initially separates the main problem into sub-problems. Then, it solves each sub-problem using different algorithms. After that, it determines the Pareto optimal solutions and trade-off pairs. To evaluate the performance of the proposed approach, various numerical problems of different sizes were solved. The results obtained are encouraging and show the efficiency of our approach.
LA - eng
KW - multi-index transportation problem; fixed charge transportation problem; fuzzy mathematics; multi-objective problems
UR - http://eudml.org/doc/299281
ER -

References

top
  1. Adlakha, V., Kowalski, K., , OMEGA: Int. J. Management Sci. 31 (2003), 205-211. DOI
  2. Adlakha, V., Kowalski, K., Lev, B., , OMEGA: Int. J. Management Sci. 38 (2010), 393-397. MR2764169DOI
  3. Ahuja, A., Arora, S. R., Multi index fixed charge bi-criterion transportation problem., Indian J. Pure Appl. Math. 32 (2001), 739-746. MR1839758
  4. Balinski, M. L., , Naval Res. Logist. Quarterly 8(1961), 41-54. DOI
  5. El-Sherbiny, M. M., Alhamali, R. M., , Comput. Industr. Engrg, 64 (2013), 610-620. DOI
  6. Gasilov, N., Amrahov, Ş. E., Fatullayev, A. G., Karakaş, H. I., AkIn, Ö., Application of geometric approach for fuzzy linear systems to a fuzzy input-output analysis., CMES: Computer Model. Engrg. Sci. 75 (2011), 189-203. MR2867758
  7. Gasilov, A. G., Fatullayev, S. E., Amrahov, Ş. E., Solution of non-square fuzzy linear systems., Journal of Multiple-Valued Logic and Soft computing, 20 (2013), 221-237. MR3059171
  8. Ghosh, S., Roy, S. K., Verdegay, J. L., , Complex Intell. Syst. 7 (2021), 1009-1023. DOI
  9. Ghosh, S., Roy, S. K., Verdegay, J. L., , Soft Comput. 26 (2022), 11611-11625. DOI
  10. Ghosh, S., Küfer, K., Roy, S. K., Weber, G., , Central Europ. J. Oper. Res. 31 (2023), 337-362 MR4537467DOI
  11. Haley, K. B., , Oper. Res. 10 (1962), 448-463. DOI
  12. Haque, S., Bhurjee, K., Kumar, P., , System Sci. Control Engrg. 10 (2022), 899-909. DOI
  13. Hedid, M., Zitouni, R., , Croatian Oper. Res. Rev. 11 (2020), 199-215. MR4205955DOI
  14. Hirsch, W. M., Dantzig, G. B., , Naval Research Logistics Quarterly, 15 (1968), 413-424. MR0258464DOI
  15. Kartli, N., Bostanci, E., Guzel, M. S., , Kybernetika 59 (2023), 45-63. MR4567841DOI
  16. Khurana, A., Adlakha, V., , OPSEARCH 52 (2015), 733-745. MR3432877DOI
  17. Kumar, A., Gupta, A., Sharma, M. K., Solving fuzzy bi-criterion fixed charge transportation problem using a new fuzzy algorithm., Int. J. Appl. Sci. Engrg. 8 (2010), 77-98. 
  18. Liou, T. S., Wang, M. J., , Fuzzy Sets Systems 50 (1992), 247-255. MR1188295DOI
  19. Lotfi, M., Tavakkoli-Moghaddam, R., , Appl. Soft Comput. 13 (2013), 2711-2726. DOI
  20. Maity, G., Yu, V. F., Roy, S. K., Optimum intervention in transportation networks using multimodel system under stochastic environment., J. Adv. Transport. (2022). 
  21. Mardanya, D., Roy, S. K., , Optimization 71 (2022), 4665-4696. MR4527229DOI
  22. Mardanya, D., Roy, S. K., , Appl. Math. J. Chin. Univ. 37 (2022), 111-130. MR4396084DOI
  23. Mardanya, D., Roy, S. K., Yu, V. F., , RAIRO Operations Research, 56 (2022), 3155-3185. MR4475689DOI
  24. Mardanya, D., Roy, S. K., , RAIRO Oper. Res. 57 (2023), 99-120. MR4534569DOI
  25. McKeown, P. G., 10.1287/opre.23.6.1183, Oper. Res. (1975), 1183-1191. MR0437033DOI10.1287/opre.23.6.1183
  26. Molla-Alizadeh, S., Nezhad, S. Sadi, Tavakkoli-Moghaddam, R., Yazdani, M., , Math. Comput. Modell. 57 (2013), 1543-1558. MR3034154DOI
  27. Mondal, A., Roy, S. K., Midya, S., , J Ambient Intell Human Comput, 14 (2023), 6975-6999. DOI
  28. Palekar, U. S., Zionts, S., , Management Sci. 36 (1990), 1092-1105. MR1073311DOI
  29. Rousseau, J. M., A Cutting Plane Method for the Fixed Cost Problem., Doctoral Dissertation. Massachusetts Institute of Technology, Cambridge 1973. 
  30. Roy, S. K., Midya, S., , Appl Intell. 49 (2019), 3524-3538. DOI
  31. Sadeghi-Moghaddam, S., Hajiaghaei-Keshteli, M., Mahmoodjamloo, M., , Neural Comput. Appl. 31 (2017), 477-497. DOI
  32. Sun, M., Aronson, J. E., Mckeown, P. G., Drinka, D., , Europ. J. Oper. Res. 106 (1998), 441-456. DOI
  33. Singh, S., Tuli, R., Sarode, D., , Int. J. Fuzzy Math. Arch. 13 (2017), 199-212. DOI
  34. Yousefi, K., Afshari, J., Hajiaghaei-Keshteli, M., Solving the fixed charge transportation problem by new heuristic approach., J. Optim. Industr. Engrg. 2 (2019), 41-52. 
  35. Zadeh, L., , Inform. Control 8 (1965), 338-353. Zbl0942.00007MR0219427DOI
  36. Zitouni, R., Achache, M., , J. Numer. Anal. Approx. Theory 46 (2017), 181-192. MR3724636DOI
  37. Zitouni, R., Keraghel, A., , Kybernetes 32 (2003), 1450-1463. DOI
  38. Zitouni, R., Keraghel, A., A note on the algorithm of resolution of a capacitated transportation problem with four subscripts., Fast East J. Math. Sci. (FJMS) 26 (2007), 769-778. MR2359643

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.