Hybrid algorithms for fixed charge transportation problem

Nermin Kartli

Kybernetika (2025)

  • Issue: 2, page 141-167
  • ISSN: 0023-5954

Abstract

top
In this paper, we consider the fixed-cost transportation problem. This problem is known to be NP-hard. Therefore, various heuristic and metaheuristic approaches have been proposed to find an approximate optimal solution. In this paper, we propose three hybrid algorithms that combine the ideas of metaheuristic and heuristic approaches in different ways. Two of the proposed algorithms consist of the sequential implementation of metaheuristic and heuristic algorithms, while the third one is a full hybrid algorithm designed by completely intertwining these two approaches. Experimental results on medium-size problems show that our proposed full hybrid algorithm provides approximately a 5

How to cite

top

Kartli, Nermin. "Hybrid algorithms for fixed charge transportation problem." Kybernetika (2025): 141-167. <http://eudml.org/doc/299979>.

@article{Kartli2025,
abstract = {In this paper, we consider the fixed-cost transportation problem. This problem is known to be NP-hard. Therefore, various heuristic and metaheuristic approaches have been proposed to find an approximate optimal solution. In this paper, we propose three hybrid algorithms that combine the ideas of metaheuristic and heuristic approaches in different ways. Two of the proposed algorithms consist of the sequential implementation of metaheuristic and heuristic algorithms, while the third one is a full hybrid algorithm designed by completely intertwining these two approaches. Experimental results on medium-size problems show that our proposed full hybrid algorithm provides approximately a 5},
author = {Kartli, Nermin},
journal = {Kybernetika},
keywords = {genetic algorithms; transportation problem; fixed charge transportation problem; metaheuristic algorithms},
language = {eng},
number = {2},
pages = {141-167},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Hybrid algorithms for fixed charge transportation problem},
url = {http://eudml.org/doc/299979},
year = {2025},
}

TY - JOUR
AU - Kartli, Nermin
TI - Hybrid algorithms for fixed charge transportation problem
JO - Kybernetika
PY - 2025
PB - Institute of Information Theory and Automation AS CR
IS - 2
SP - 141
EP - 167
AB - In this paper, we consider the fixed-cost transportation problem. This problem is known to be NP-hard. Therefore, various heuristic and metaheuristic approaches have been proposed to find an approximate optimal solution. In this paper, we propose three hybrid algorithms that combine the ideas of metaheuristic and heuristic approaches in different ways. Two of the proposed algorithms consist of the sequential implementation of metaheuristic and heuristic algorithms, while the third one is a full hybrid algorithm designed by completely intertwining these two approaches. Experimental results on medium-size problems show that our proposed full hybrid algorithm provides approximately a 5
LA - eng
KW - genetic algorithms; transportation problem; fixed charge transportation problem; metaheuristic algorithms
UR - http://eudml.org/doc/299979
ER -

References

top
  1. Adlakha, V., Kowalski, K., , Omega 27 (1999), 3, 381-388. DOI
  2. Adlakha, V., Kowalski, K., , Omega 31 (2003), 3, 205-211. DOI
  3. Adlakha, V., Kowalski, K., Vemuganti, R. R., , Opsearch 43 (2006), 132-151. MR2764169DOI
  4. Adlakha, V., Kowalski, K., Lev, B., , Omega 38 (2010), 5, 393-397. MR2764169DOI
  5. Amrahov, S. E., Ar, Y., Tugrul, B., Akay, B. E., Kartli, N., , Future Generation Computer Systems 157 (2024), 330-343. DOI
  6. Balinski, M. L., , Naval Research Logistics Quarterly 8 (1961), 1, 41-54. DOI
  7. Biswas, A., Roy, S., Mondal, S. P., , Applied Soft Computing 129 (2022), 109576. DOI
  8. Calvete, H. I., Gale, C, Iranzo, J. A., Toth, P., , Computers Oper. Res. 95 (2018), 113-122. MR3789199DOI
  9. Cosma, O., Pop, P. C., Danciulescu, D., , Computers Oper. Res. 118 (2020), 104906. MR4067956DOI
  10. Dantzig, G. B., , Oper. Res. 50 (2002), 1, 42-47. MR1885208DOI
  11. Ebrahimnejad, A., , Inform. Sci. 357 (2016), 108-124. MR3414360DOI
  12. Eiben, A. E., Smith, A. E., Introduction to Evolutionary Computing., Springer-Verlag, Berlin, Heidelberg 2015. MR3379133
  13. El-Sherbiny, M. M., Alhamali, R. M., , Computers Industr. Engrg. 64 (2013), 2, 610-620. DOI
  14. Hakim, M., Zitouni, R., , Kybernetika 60 (2024), 3, 271-292. MR4777310DOI
  15. Nejad, E. Hazrati, Yigit-Sert, S., Amrahov, S. Emrah, , Kybernetika 60 (2024), 3, 293-316. DOI
  16. Hirsch, W. M., Dantzig, G. B., , Naval Res. Logist. Quarterly 15 (1968), 3, 413-424. MR0258464DOI
  17. Hitchcock, F. L., , J. Math. Physics 20 (1941), 224-230. MR0004469DOI
  18. Hong, J., Diabat, A., Panicker, V. V., Rajagopalan, Sand ., , Int. J. Product. Econom. 204, (2018), 214-226. DOI
  19. Hosseini, A., Pishvaee, M. S., , Fuzzy Optim. Decision Making 21 (2022), 3, 479-512. MR4456241DOI
  20. Rani, J. Jansi, Manivannan, A., Dhanasekar, S., , Int. J. Fuzzy Systems 25 (2023), 4, 1465-1479. DOI
  21. Jawahar, N., Balaji, A. N., , Eur. J. Oper. Res. 194 (2009), 2, 496-537. DOI
  22. Jawahar, N., Gunasekaran, A., Balaji, N., , Int. J. Prod. Res. 50 (2012), 9, 2533-2554. DOI
  23. Jo, J. B., Li, Y., Gen, M., , Computers Industr. Engrg. 53 (2007), 2, 290-298. DOI
  24. Kartlı, N., Bostancı, E., Guzel, M. S., , In: 2022 7th International Conference on Computer Science and Engineering (UBMK), IEEE 2022, pp. 82-85. MR4567841DOI
  25. Kartli, N., Bostanci, E., Guzel, M. S., , Kybernetika 59 (2023), 1, 45-63. MR4567841DOI
  26. Kartli, N., Bostanci, E., Guzel, M. S., , Computing 106 (2024), 10, 3195-3227. MR4794582DOI
  27. Kartli, N., , In 2024 9th International Conference on Computer Science and Engineering (UBMK) IEEE (2024) 1030–1033. DOI:10.1109/UBMK63289.2024.10773580 DOI
  28. Lotfi, M. M., Tavakkoli-Moghaddam, R., , Appl. Soft Comput. 13 (2013), 5, 2711-2726. DOI
  29. Mardanya, D., Roy, S. K., , RAIRO Oper. Res. 57 (2023), 1, 99-120. MR4534569DOI
  30. Mirjalili, S., , Neural Comput. Appl. 27 (2016) 1053-1073. DOI
  31. Mohammed, A. S., Amrahov, S. E., Celebi, F. V., , Future Generation Computer Systems 71 (2017), 102-112. DOI
  32. Mondal, A., Roy, S. K., , Appl. Soft Computing 151 (2024), 111182. DOI
  33. Panicker, V. V., Vanga, R., Sridharan, R., , Int. J. Prod. Res. 51 (2013), 3, 698-717. DOI
  34. Paojiyah, A. N. S., Az'zahra, A. P., Aulia, V. F., Wulan, E. R., Penerapan Dragonfly Optimization Algorithm (DOA) untuk Menyelesaikan Fixed Charge Transportation Problem (FCTP)., KUBIK: Jurnal Publikasi Ilmiah Matematika 9 (2024), 2, 187-197. 
  35. Pop, P. C., Sabo, C., Biesinger, B., Hu, B., Raidl, G. R., 10.37193/CJM.2017.03.11, Carpathian J. Math. 33 (2017), 3, 365-371. MR3728059DOI10.37193/CJM.2017.03.11
  36. Raj, K. A. A. D., Rajendran, C., , Comput. Oper. Res. 39 (2012), 9, 2016-2032. DOI
  37. Rao, R. V., Savsani, V. J., Vakharia, D., , Computer-aided Design 43 (2011), 303-315. MR2847014DOI
  38. Saikia, B., Dutta, P., Talukdar, P., , Artif. Intell. Rev. 56 (2023), 11, 12689-12724. DOI
  39. Sandhiya, S., Dhanapal, A., , Contemp. Math. 5 (2024), 3, 3601-3624. DOI
  40. Singh, G., Singh, A., , Appl. Soft Comput. 110 (2021), 107619. DOI
  41. Shivani, Chauhan, D., Rani, D., , Swarm Evolutionary Comput. 91 (2024), 101776. DOI
  42. Sun, M., Aronson, J. E., Mckeown, P. G., Drinka, D., Tabu search heuristic procedure for the fixed charge transportation problem., Eur. J. Oper. Res. 106 (1998), 2-3, 411-456. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.