On zero-symmetric nearrings with identity whose additive groups are simple
Wen-Fong Ke; Johannes H. Meyer; Günter F. Pilz; Gerhard Wendt
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 3, page 869-880
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKe, Wen-Fong, et al. "On zero-symmetric nearrings with identity whose additive groups are simple." Czechoslovak Mathematical Journal 74.3 (2024): 869-880. <http://eudml.org/doc/299296>.
@article{Ke2024,
abstract = {We investigate conditions on an infinite simple group in order to construct a zero-symmetric nearring with identity on it. Using the Higman-Neumann-Neumann extensions and Clay’s characterization, we obtain zero-symmetric nearrings with identity with the additive groups infinite simple groups. We also show that no zero-symmetric nearring with identity can have the symmetric group $\{\rm Sym\}(\mathbb \{N\})$ as its additive group.},
author = {Ke, Wen-Fong, Meyer, Johannes H., Pilz, Günter F., Wendt, Gerhard},
journal = {Czechoslovak Mathematical Journal},
keywords = {infinite simple group; HNN extension; nearring with identity},
language = {eng},
number = {3},
pages = {869-880},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On zero-symmetric nearrings with identity whose additive groups are simple},
url = {http://eudml.org/doc/299296},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Ke, Wen-Fong
AU - Meyer, Johannes H.
AU - Pilz, Günter F.
AU - Wendt, Gerhard
TI - On zero-symmetric nearrings with identity whose additive groups are simple
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 3
SP - 869
EP - 880
AB - We investigate conditions on an infinite simple group in order to construct a zero-symmetric nearring with identity on it. Using the Higman-Neumann-Neumann extensions and Clay’s characterization, we obtain zero-symmetric nearrings with identity with the additive groups infinite simple groups. We also show that no zero-symmetric nearring with identity can have the symmetric group ${\rm Sym}(\mathbb {N})$ as its additive group.
LA - eng
KW - infinite simple group; HNN extension; nearring with identity
UR - http://eudml.org/doc/299296
ER -
References
top- Baumslag, G., 10.1007/978-3-0348-8587-4, Lectures in Mathematics, ETH Zürich. Birkhäuser, Basel (1993). (1993) Zbl0797.20001MR1243634DOI10.1007/978-3-0348-8587-4
- Clay, J. R., 10.1007/BF01110428, Math. Z. 104 (1968), 364-371. (1968) Zbl0153.35704MR0224659DOI10.1007/BF01110428
- J. R. Clay, J. J. Malone, Jr., 10.7146/math.scand.a-10803, Math. Scand. 19 (1966), 146-150. (1966) Zbl0149.02701MR0207774DOI10.7146/math.scand.a-10803
- Dickson, L. E., 10.1090/S0002-9947-1901-1500573-3, Trans. Am. Math. Soc. 2 (1901), 363-394 9999JFM99999 32.0131.03. (1901) MR1500573DOI10.1090/S0002-9947-1901-1500573-3
- Dixon, J. D., Neumann, P. M., Thomas, S., 10.1112/blms/18.6.580, Bull. Lond. Math. Soc. 18 (1986), 580-586. (1986) Zbl0607.20003MR0859950DOI10.1112/blms/18.6.580
- Hamilton, A. G., 10.1017/cbo9781139171618, Cambridge University Press, Cambridge (1982). (1982) Zbl0497.04001MR0691672DOI10.1017/cbo9781139171618
- Higman, G., Neumann, B. H., Neumann, H., 10.1112/jlms/s1-24.4.247, J. Lond. Math. Soc. 24 (1949), 247-254. (1949) Zbl0034.30101MR0032641DOI10.1112/jlms/s1-24.4.247
- Kaarli, K., On ideal transitivity in near-rings, Contributions to General Algebra 8 Höder-Pichler-Tempsky, Vienna (1992), 81-89. (1992) Zbl0790.16036MR1281831
- Lyndon, R. C., Shupp, P. E., 10.1007/978-3-642-61896-3, Ergebnisse der Mathematik und ihrer Grenzgebiete 89. Springer, Berlin (1977). (1977) Zbl0368.20023MR0577064DOI10.1007/978-3-642-61896-3
- Ol'shanskii, A. Y., 10.1070/IM1980v015n03ABEH001268, Math. USSR, Izv. 15 (1980), 531-588 Translation from Izv. Akad. Nauk SSSR, Ser. Mat. 43 1979 1328-1393. (1980) Zbl0453.20024MR0567039DOI10.1070/IM1980v015n03ABEH001268
- Ol'shanskii, A. Y., 10.1007/BF02027230, Algebra Logic 21 (1983), 369-418 Translation from Algebra Logika 21 1982 553-618. (1983) Zbl0524.20024MR0721048DOI10.1007/BF02027230
- Pilz, G., 10.1016/s0304-0208(08)x7135-x, North-Holland Mathematics Studies 23. North-Holland, Amsterdam (1977). (1977) Zbl0349.16015MR0469981DOI10.1016/s0304-0208(08)x7135-x
- Rotman, J. J., 10.1007/978-1-4612-4176-8, Graduate Texts in Mathematics 148. Springer, Berlin (1995). (1995) Zbl0810.20001MR1307623DOI10.1007/978-1-4612-4176-8
- Schreier, J., Ulam, S., 10.4064/sm-4-1-134-141, Stud. Math. 4 (1933), 134-141 German. (1933) Zbl0008.20003DOI10.4064/sm-4-1-134-141
- Schreier, J., Ulam, S., 10.4064/fm-28-1-258-260, Fundam. Math. 28 (1937), 258-260 German. (1937) Zbl0016.20301DOI10.4064/fm-28-1-258-260
- Scott, E. A., 10.1007/978-1-4613-9730-4_4, Algorithms and Classification in Combinatorial Group Theory Springer, New York (1992), 83-119. (1992) Zbl0753.20008MR1230630DOI10.1007/978-1-4613-9730-4_4
- Scott, W. R., Group Theory, Dover, New York 1987 9999MR99999 0896269 . Zbl0641.20001MR0896269
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.