On zero-symmetric nearrings with identity whose additive groups are simple

Wen-Fong Ke; Johannes H. Meyer; Günter F. Pilz; Gerhard Wendt

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 3, page 869-880
  • ISSN: 0011-4642

Abstract

top
We investigate conditions on an infinite simple group in order to construct a zero-symmetric nearring with identity on it. Using the Higman-Neumann-Neumann extensions and Clay’s characterization, we obtain zero-symmetric nearrings with identity with the additive groups infinite simple groups. We also show that no zero-symmetric nearring with identity can have the symmetric group Sym ( ) as its additive group.

How to cite

top

Ke, Wen-Fong, et al. "On zero-symmetric nearrings with identity whose additive groups are simple." Czechoslovak Mathematical Journal 74.3 (2024): 869-880. <http://eudml.org/doc/299296>.

@article{Ke2024,
abstract = {We investigate conditions on an infinite simple group in order to construct a zero-symmetric nearring with identity on it. Using the Higman-Neumann-Neumann extensions and Clay’s characterization, we obtain zero-symmetric nearrings with identity with the additive groups infinite simple groups. We also show that no zero-symmetric nearring with identity can have the symmetric group $\{\rm Sym\}(\mathbb \{N\})$ as its additive group.},
author = {Ke, Wen-Fong, Meyer, Johannes H., Pilz, Günter F., Wendt, Gerhard},
journal = {Czechoslovak Mathematical Journal},
keywords = {infinite simple group; HNN extension; nearring with identity},
language = {eng},
number = {3},
pages = {869-880},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On zero-symmetric nearrings with identity whose additive groups are simple},
url = {http://eudml.org/doc/299296},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Ke, Wen-Fong
AU - Meyer, Johannes H.
AU - Pilz, Günter F.
AU - Wendt, Gerhard
TI - On zero-symmetric nearrings with identity whose additive groups are simple
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 3
SP - 869
EP - 880
AB - We investigate conditions on an infinite simple group in order to construct a zero-symmetric nearring with identity on it. Using the Higman-Neumann-Neumann extensions and Clay’s characterization, we obtain zero-symmetric nearrings with identity with the additive groups infinite simple groups. We also show that no zero-symmetric nearring with identity can have the symmetric group ${\rm Sym}(\mathbb {N})$ as its additive group.
LA - eng
KW - infinite simple group; HNN extension; nearring with identity
UR - http://eudml.org/doc/299296
ER -

References

top
  1. Baumslag, G., 10.1007/978-3-0348-8587-4, Lectures in Mathematics, ETH Zürich. Birkhäuser, Basel (1993). (1993) Zbl0797.20001MR1243634DOI10.1007/978-3-0348-8587-4
  2. Clay, J. R., 10.1007/BF01110428, Math. Z. 104 (1968), 364-371. (1968) Zbl0153.35704MR0224659DOI10.1007/BF01110428
  3. J. R. Clay, J. J. Malone, Jr., 10.7146/math.scand.a-10803, Math. Scand. 19 (1966), 146-150. (1966) Zbl0149.02701MR0207774DOI10.7146/math.scand.a-10803
  4. Dickson, L. E., 10.1090/S0002-9947-1901-1500573-3, Trans. Am. Math. Soc. 2 (1901), 363-394 9999JFM99999 32.0131.03. (1901) MR1500573DOI10.1090/S0002-9947-1901-1500573-3
  5. Dixon, J. D., Neumann, P. M., Thomas, S., 10.1112/blms/18.6.580, Bull. Lond. Math. Soc. 18 (1986), 580-586. (1986) Zbl0607.20003MR0859950DOI10.1112/blms/18.6.580
  6. Hamilton, A. G., 10.1017/cbo9781139171618, Cambridge University Press, Cambridge (1982). (1982) Zbl0497.04001MR0691672DOI10.1017/cbo9781139171618
  7. Higman, G., Neumann, B. H., Neumann, H., 10.1112/jlms/s1-24.4.247, J. Lond. Math. Soc. 24 (1949), 247-254. (1949) Zbl0034.30101MR0032641DOI10.1112/jlms/s1-24.4.247
  8. Kaarli, K., On ideal transitivity in near-rings, Contributions to General Algebra 8 Höder-Pichler-Tempsky, Vienna (1992), 81-89. (1992) Zbl0790.16036MR1281831
  9. Lyndon, R. C., Shupp, P. E., 10.1007/978-3-642-61896-3, Ergebnisse der Mathematik und ihrer Grenzgebiete 89. Springer, Berlin (1977). (1977) Zbl0368.20023MR0577064DOI10.1007/978-3-642-61896-3
  10. Ol'shanskii, A. Y., 10.1070/IM1980v015n03ABEH001268, Math. USSR, Izv. 15 (1980), 531-588 Translation from Izv. Akad. Nauk SSSR, Ser. Mat. 43 1979 1328-1393. (1980) Zbl0453.20024MR0567039DOI10.1070/IM1980v015n03ABEH001268
  11. Ol'shanskii, A. Y., 10.1007/BF02027230, Algebra Logic 21 (1983), 369-418 Translation from Algebra Logika 21 1982 553-618. (1983) Zbl0524.20024MR0721048DOI10.1007/BF02027230
  12. Pilz, G., 10.1016/s0304-0208(08)x7135-x, North-Holland Mathematics Studies 23. North-Holland, Amsterdam (1977). (1977) Zbl0349.16015MR0469981DOI10.1016/s0304-0208(08)x7135-x
  13. Rotman, J. J., 10.1007/978-1-4612-4176-8, Graduate Texts in Mathematics 148. Springer, Berlin (1995). (1995) Zbl0810.20001MR1307623DOI10.1007/978-1-4612-4176-8
  14. Schreier, J., Ulam, S., 10.4064/sm-4-1-134-141, Stud. Math. 4 (1933), 134-141 German. (1933) Zbl0008.20003DOI10.4064/sm-4-1-134-141
  15. Schreier, J., Ulam, S., 10.4064/fm-28-1-258-260, Fundam. Math. 28 (1937), 258-260 German. (1937) Zbl0016.20301DOI10.4064/fm-28-1-258-260
  16. Scott, E. A., 10.1007/978-1-4613-9730-4_4, Algorithms and Classification in Combinatorial Group Theory Springer, New York (1992), 83-119. (1992) Zbl0753.20008MR1230630DOI10.1007/978-1-4613-9730-4_4
  17. Scott, W. R., Group Theory, Dover, New York 1987 9999MR99999 0896269 . Zbl0641.20001MR0896269

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.