Left EM rings

Jongwook Baeck

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 3, page 839-867
  • ISSN: 0011-4642

Abstract

top
Let R [ x ] be the polynomial ring over a ring R with unity. A polynomial f ( x ) R [ x ] is referred to as a left annihilating content polynomial (left ACP) if there exist an element r R and a polynomial g ( x ) R [ x ] such that f ( x ) = r g ( x ) and g ( x ) is not a right zero-divisor polynomial in R [ x ] . A ring R is referred to as left EM if each polynomial f ( x ) R [ x ] is a left ACP. We observe the structure of left EM rings with various properties, and study the relationships between the one-sided EM condition and other standard ring theoretic conditions. Moreover, several extensions of EM rings are investigated, including polynomial rings, matrix rings, and Ore localizations.

How to cite

top

Baeck, Jongwook. "Left EM rings." Czechoslovak Mathematical Journal 74.3 (2024): 839-867. <http://eudml.org/doc/299297>.

@article{Baeck2024,
abstract = {Let $R[x]$ be the polynomial ring over a ring $R$ with unity. A polynomial $f(x)\in R[x]$ is referred to as a left annihilating content polynomial (left ACP) if there exist an element $r \in R$ and a polynomial $g(x) \in R[x]$ such that $f(x)=rg(x)$ and $g(x)$ is not a right zero-divisor polynomial in $R[x]$. A ring $R$ is referred to as left EM if each polynomial $f(x) \in R[x]$ is a left ACP. We observe the structure of left EM rings with various properties, and study the relationships between the one-sided EM condition and other standard ring theoretic conditions. Moreover, several extensions of EM rings are investigated, including polynomial rings, matrix rings, and Ore localizations.},
author = {Baeck, Jongwook},
journal = {Czechoslovak Mathematical Journal},
keywords = {EM ring; annihilating content polynomial; polynomial ring; uniserial ring; generalized morphic ring; zero-divisor},
language = {eng},
number = {3},
pages = {839-867},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Left EM rings},
url = {http://eudml.org/doc/299297},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Baeck, Jongwook
TI - Left EM rings
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 3
SP - 839
EP - 867
AB - Let $R[x]$ be the polynomial ring over a ring $R$ with unity. A polynomial $f(x)\in R[x]$ is referred to as a left annihilating content polynomial (left ACP) if there exist an element $r \in R$ and a polynomial $g(x) \in R[x]$ such that $f(x)=rg(x)$ and $g(x)$ is not a right zero-divisor polynomial in $R[x]$. A ring $R$ is referred to as left EM if each polynomial $f(x) \in R[x]$ is a left ACP. We observe the structure of left EM rings with various properties, and study the relationships between the one-sided EM condition and other standard ring theoretic conditions. Moreover, several extensions of EM rings are investigated, including polynomial rings, matrix rings, and Ore localizations.
LA - eng
KW - EM ring; annihilating content polynomial; polynomial ring; uniserial ring; generalized morphic ring; zero-divisor
UR - http://eudml.org/doc/299297
ER -

References

top
  1. Abuosba, E., Al-Azaizeh, M., Ghanem, M., 10.4134/CKMS.c210439, Commun. Korean Math. Soc. 38 (2023), 69-77. (2023) Zbl1519.13001MR4542621DOI10.4134/CKMS.c210439
  2. Abuosba, E., Ghanem, M., 10.4134/JKMS.j180698, J. Korean Math. Soc. 56 (2019), 1403-1418. (2019) Zbl1427.13024MR3997475DOI10.4134/JKMS.j180698
  3. Agayev, N., Güngöroğlu, G., Harmanci, A., Halicioğlu, S., Abelian modules, Acta Math. Univ. Comen., New Ser. 78 (2009), 235-244. (2009) Zbl1190.16047MR2684191
  4. Anderson, D. D., Abuosba, E., Ghanem, M., 10.1142/S021949882250092X, J. Algebra Appl. 21 (2022), Article ID 2250092, 18 pages. (2022) Zbl1490.13002MR4406639DOI10.1142/S021949882250092X
  5. Anderson, D. D., Anderson, D. F., Markanda, R., 10.1016/0021-8693(85)90096-1, J. Algebra 95 (1985), 96-115. (1985) Zbl0621.13008MR0797658DOI10.1016/0021-8693(85)90096-1
  6. Anderson, D. D., Camillo, V., 10.1080/00927879808826274, Commun. Algebra 26 (1998), 2265-2272. (1998) Zbl0915.13001MR1626606DOI10.1080/00927879808826274
  7. Anderson, D. D., Dumitrescu, T., 10.1081/AGB-120013328, Commun. Algebra 30 (2002), 4407-4416. (2002) Zbl1060.13007MR1936480DOI10.1081/AGB-120013328
  8. Baeck, J., 10.1216/rmj.2021.51.771, Rocky Mt. J. Math. 51 (2021), 771-785. (2021) Zbl1477.16040MR4298828DOI10.1216/rmj.2021.51.771
  9. Baeck, J., 10.1515/math-2022-0545, Open Math. 20 (2022), 1734-1752. (2022) Zbl1508.16008MR4529433DOI10.1515/math-2022-0545
  10. Baeck, J., 10.3934/math.2022673, AIMS Math. 7 (2022), 12106-12122. (2022) MR4431772DOI10.3934/math.2022673
  11. Baeck, J., 10.1007/s13398-023-01514-7, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 118 (2024), Article ID 20, 20 pages. (2024) Zbl07796711MR4662890DOI10.1007/s13398-023-01514-7
  12. Baeck, J., Kim, N. K., Kwak, T. K., Lee, Y., 10.55730/1300-0098.3243, Turk. J. Math. 46 (2022), 1945-1964. (2022) Zbl1515.16034MR4453897DOI10.55730/1300-0098.3243
  13. Baeck, J., Kim, N. K., Lee, Y., Nielsen, P. P., 10.1016/j.jpaa.2020.106432, J. Pure Appl. Algebra 224 (2020), Article ID 106432, 13 pages. (2020) Zbl1465.16037MR4099920DOI10.1016/j.jpaa.2020.106432
  14. Baeck, J., Lee, G., Lim, J. W., 10.11650/tjm.20.2016.7436, Taiwanese J. Math. 20 (2016), 1231-1250. (2016) Zbl1357.16039MR3580293DOI10.11650/tjm.20.2016.7436
  15. Bergman, G. M., 10.1016/0001-8708(78)90010-5, Adv. Math. 29 (1978), 178-218. (1978) Zbl0326.16019MR0506890DOI10.1016/0001-8708(78)90010-5
  16. Bilgin, Z., Reyes, M. L., Tekir, Ü., 10.1080/00927872.2017.1332199, Commun. Algebra 46 (2018), 863-869. (2018) Zbl1410.16026MR3764903DOI10.1080/00927872.2017.1332199
  17. Camillo, V., Nielsen, P. P., 10.1016/j.jpaa.2007.06.010, J. Pure Appl. Algebra 212 (2008), 599-615. (2008) Zbl1162.16021MR2365335DOI10.1016/j.jpaa.2007.06.010
  18. Cannon, G. A., Neuerburg, K. M., 10.35834/mjms/1316032775, Missouri J. Math. Sci. 20 (2008), 165-168. (2008) Zbl1174.16001DOI10.35834/mjms/1316032775
  19. Cui, J., Chen, J., 10.4134/BKMS.2011.48.1.023, Bull. Korean Math. Soc. 48 (2011), 23-33. (2011) Zbl1221.16028MR2778493DOI10.4134/BKMS.2011.48.1.023
  20. Endo, S., 10.1017/S0027763000002129, Nagoya Math. J. 17 (1960), 167-170. (1960) Zbl0117.02203MR0137746DOI10.1017/S0027763000002129
  21. K. R. Goodearl, R. B. Warfield, Jr., 10.1017/CBO9780511841699, London Mathematical Society Student Texts 61. Cambridge University Press, Cambridge (2004). (2004) Zbl1101.16001MR2080008DOI10.1017/CBO9780511841699
  22. Hashemi, E., Estaji, A. AS., Ziembowski, M., 10.1017/S0013091516000407, Proc. Edinb. Math. Soc., II. Ser. 60 (2017), 651-664. (2017) Zbl1405.16036MR3674083DOI10.1017/S0013091516000407
  23. Hong, C. Y., Jeon, Y. C., Kim, N. K., Lee, Y., 10.1080/00927872.2010.480952, Commun. Algebra 39 (2011), 1809-1825. (2011) Zbl1231.16032MR2821508DOI10.1080/00927872.2010.480952
  24. Hong, C. Y., Kim, N. K., Lee, Y., Nielsen, P. P., 10.1016/j.jpaa.2009.01.005, J. Pure Appl. Algebra 213 (2009), 1478-1488. (2009) Zbl1218.16001MR2497591DOI10.1016/j.jpaa.2009.01.005
  25. Hong, C. Y., Kim, N. K., Lee, Y., Ryu, S. J., 10.1016/j.jalgebra.2007.01.042, J. Algebra 315 (2007), 612-628. (2007) Zbl1156.16001MR2351882DOI10.1016/j.jalgebra.2007.01.042
  26. Huckaba, J. A., Keller, J. M., 10.2140/pjm.1979.83.375, Pac. J. Math. 83 (1979), 375-379. (1979) Zbl0388.13001MR0557938DOI10.2140/pjm.1979.83.375
  27. Jordan, D. A., 10.1112/blms/12.3.202, Bull. Lond. Math. Soc. 12 (1980), 202-204. (1980) Zbl0433.16001MR0572101DOI10.1112/blms/12.3.202
  28. Kaplansky, I., Commutative Rings, University of Chicago Press, Chicago (1974). (1974) Zbl0296.13001MR0345945
  29. Kim, N. K., Lee, Y., 10.1006/jabr.1999.8017, J. Algebra 223 (2000), 477-488. (2000) Zbl0957.16018MR1735157DOI10.1006/jabr.1999.8017
  30. Lam, T. Y., 10.1007/978-1-4419-8616-0, Graduate Texts in Mathematics 131. Springer, New York (1991). (1991) Zbl0728.16001MR1125071DOI10.1007/978-1-4419-8616-0
  31. Lam, T. Y., 10.1007/978-1-4612-0525-8, Graduate Texts in Mathematics 189. Springer, New York (1999). (1999) Zbl0911.16001MR1653294DOI10.1007/978-1-4612-0525-8
  32. Lang, S., 10.1007/978-1-4613-0041-0, Graduate Texts in Mathematics 211. Springer, New York (2002). (2002) Zbl0984.00001MR1878556DOI10.1007/978-1-4613-0041-0
  33. Lee, G., Baeck, J., Lim, J. W., 10.11650/tjm/221101, Taiwanese J. Math. 27 (2023), 237-257. (2023) Zbl1529.16018MR4563518DOI10.11650/tjm/221101
  34. Lee, T.-K., Zhou, Y., 10.1081/AGB-120037221, Commun. Algebra 32 (2004), 2287-2299. (2004) Zbl1068.16037MR2100471DOI10.1081/AGB-120037221
  35. Marks, G., Mazurek, R., Ziembowski, M., 10.1017/S0004972709001178, Bull. Aust. Math. Soc. 81 (2010), 361-397. (2010) Zbl1198.16025MR2639852DOI10.1017/S0004972709001178
  36. Mazurek, R., Ziembowski, M., 10.1016/j.jalgebra.2010.11.014, J. Algebra 330 (2011), 130-146. (2011) Zbl1239.16041MR2774621DOI10.1016/j.jalgebra.2010.11.014
  37. Nielsen, P. P., 10.1016/j.jalgebra.2005.10.008, J. Algebra 298 (2006), 134-141. (2006) Zbl1110.16036MR2215121DOI10.1016/j.jalgebra.2005.10.008
  38. Rege, M. B., Chhawchharia, S., 10.3792/pjaa.73.14, Proc. Japan Acad., Ser. A 73 (1997), 14-17. (1997) Zbl0960.16038MR1442245DOI10.3792/pjaa.73.14

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.