Displaying similar documents to “Left EM rings”

About G-rings

Najib Mahdou (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper, we are concerned with G-rings. We generalize the Kaplansky’s theorem to rings with zero-divisors. Also, we assert that if R T is a ring extension such that m T R for some regular element m of T , then T is a G-ring if and only if so is R . Also, we examine the transfer of the G-ring property to trivial ring extensions. Finally, we conclude the paper with illustrative examples discussing the utility and limits of our results.

Notes on generalizations of Bézout rings

Haitham El Alaoui, Hakima Mouanis (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper, we give new characterizations of the P - 2 -Bézout property of trivial ring extensions. Also, we investigate the transfer of this property to homomorphic images and to finite direct products. Our results generate original examples which enrich the current literature with new examples of non- 2 -Bézout P - 2 -Bézout rings and examples of non- P -Bézout P - 2 -Bézout rings.

On weakened ( α , δ ) -skew Armendariz rings

Alireza Majdabadi Farahani, Mohammad Maghasedi, Farideh Heydari, Hamidagha Tavallaee (2022)

Mathematica Bohemica

Similarity:

In this note, for a ring endomorphism α and an α -derivation δ of a ring R , the notion of weakened ( α , δ ) -skew Armendariz rings is introduced as a generalization of α -rigid rings and weak Armendariz rings. It is proved that R is a weakened ( α , δ ) -skew Armendariz ring if and only if T n ( R ) is weakened ( α ¯ , δ ¯ ) -skew Armendariz if and only if R [ x ] / ( x n ) is weakened ( α ¯ , δ ¯ ) -skew Armendariz ring for any positive integer n .

A generalization of reflexive rings

Mete Burak Çalcı, Huanyin Chen, Sait Halıcıoğlu (2024)

Mathematica Bohemica

Similarity:

We introduce a class of rings which is a generalization of reflexive rings and J -reversible rings. Let R be a ring with identity and J ( R ) denote the Jacobson radical of R . A ring R is called J -reflexive if for any a , b R , a R b = 0 implies b R a J ( R ) . We give some characterizations of a J -reflexive ring. We prove that some results of reflexive rings can be extended to J -reflexive rings for this general setting. We conclude some relations between J -reflexive rings and some related rings. We investigate some extensions...

Skew inverse power series rings over a ring with projective socle

Kamal Paykan (2017)

Czechoslovak Mathematical Journal

Similarity:

A ring R is called a right PS -ring if its socle, Soc ( R R ) , is projective. Nicholson and Watters have shown that if R is a right PS -ring, then so are the polynomial ring R [ x ] and power series ring R [ [ x ] ] . In this paper, it is proved that, under suitable conditions, if R has a (flat) projective socle, then so does the skew inverse power series ring R [ [ x - 1 ; α , δ ] ] and the skew polynomial ring R [ x ; α , δ ] , where R is an associative ring equipped with an automorphism α and an α -derivation δ . Our results extend and unify many existing...

Unimodular rows over Laurent polynomial rings

Abdessalem Mnif, Morou Amidou (2022)

Czechoslovak Mathematical Journal

Similarity:

We prove that for any ring 𝐑 of Krull dimension not greater than 1 and n 3 , the group E n ( 𝐑 [ X , X - 1 ] ) acts transitively on Um n ( 𝐑 [ X , X - 1 ] ) . In particular, we obtain that for any ring 𝐑 with Krull dimension not greater than 1, all finitely generated stably free modules over 𝐑 [ X , X - 1 ] are free. All the obtained results are proved constructively.

Avoidance principle and intersection property for a class of rings

Rahul Kumar, Atul Gaur (2020)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative ring with identity. If a ring R is contained in an arbitrary union of rings, then R is contained in one of them under various conditions. Similarly, if an arbitrary intersection of rings is contained in R , then R contains one of them under various conditions.

Rings in which elements are sum of a central element and an element in the Jacobson radical

Guanglin Ma, Yao Wang, André Leroy (2024)

Czechoslovak Mathematical Journal

Similarity:

An element in a ring R is called CJ if it is of the form c + j , where c belongs to the center and j is an element from the Jacobson radical. A ring R is called CJ if each element of R is CJ. We establish the basic properties of CJ rings, give several characterizations of these rings, and connect this notion with many standard elementwise properties such as clean, uniquely clean, nil clean, CN, and CU. We study the behavior of this notion under various ring extensions. In particular, we show...

P-injective group rings

Liang Shen (2020)

Czechoslovak Mathematical Journal

Similarity:

A ring R is called right P-injective if every homomorphism from a principal right ideal of R to R R can be extended to a homomorphism from R R to R R . Let R be a ring and G a group. Based on a result of Nicholson and Yousif, we prove that the group ring RG is right P-injective if and only if (a) R is right P-injective; (b) G is locally finite; and (c) for any finite subgroup H of G and any principal right ideal I of RH , if f Hom R ( I R , R R ) , then there exists g Hom R ( RH R , R R ) such that g | I = f . Similarly, we also obtain equivalent...

A subclass of strongly clean rings

Orhan Gurgun, Sait Halicioglu and Burcu Ungor (2015)

Communications in Mathematics

Similarity:

In this paper, we introduce a subclass of strongly clean rings. Let R be a ring with identity, J be the Jacobson radical of R , and let J # denote the set of all elements of R which are nilpotent in R / J . An element a R is called provided that there exists an idempotent e R such that a e = e a and a - e or a + e is an element of J # . A ring R is said to be in case every element in R is very J # -clean. We prove that every very J # -clean ring is strongly π -rad clean and has stable range one. It is shown that for a...

On some noetherian rings of C germs on a real closed field

Abdelhafed Elkhadiri (2011)

Annales Polonici Mathematici

Similarity:

Let R be a real closed field, and denote by R , n the ring of germs, at the origin of Rⁿ, of C functions in a neighborhood of 0 ∈ Rⁿ. For each n ∈ ℕ, we construct a quasianalytic subring R , n R , n with some natural properties. We prove that, for each n ∈ ℕ, R , n is a noetherian ring and if R = ℝ (the field of real numbers), then , n = , where ₙ is the ring of germs, at the origin of ℝⁿ, of real analytic functions. Finally, we prove the Real Nullstellensatz and solve Hilbert’s 17th Problem for the ring R , n . ...