The operation and * operation of Cohen-Macaulay bipartite graphs

Yulong Yang; Guangjun Zhu; Yijun Cui; Shiya Duan

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 3, page 735-757
  • ISSN: 0011-4642

Abstract

top
Let G be a finite simple graph with the vertex set V and let I G be its edge ideal in the polynomial ring S = 𝕂 [ V ] . We compute the depth and the Castelnuovo-Mumford regularity of S / I G when G = G 1 G 2 or G = G 1 * G 2 is a graph obtained from Cohen-Macaulay bipartite graphs G 1 , G 2 by the operation or * operation, respectively.

How to cite

top

Yang, Yulong, et al. "The $\circ $ operation and $*$ operation of Cohen-Macaulay bipartite graphs." Czechoslovak Mathematical Journal 74.3 (2024): 735-757. <http://eudml.org/doc/299300>.

@article{Yang2024,
abstract = {Let $G$ be a finite simple graph with the vertex set $V$ and let $I_G$ be its edge ideal in the polynomial ring $S= \mathbb \{K\} [V]$. We compute the depth and the Castelnuovo-Mumford regularity of $S/I_G$ when $G=G_1\circ G_2$ or $G=G_1* G_2$ is a graph obtained from Cohen-Macaulay bipartite graphs $G_1$, $G_2$ by the $\circ $ operation or $*$ operation, respectively.},
author = {Yang, Yulong, Zhu, Guangjun, Cui, Yijun, Duan, Shiya},
journal = {Czechoslovak Mathematical Journal},
keywords = {regularity; depth; $\circ $ operation; $*$ operation; Cohen-Macaulay bipartite graph},
language = {eng},
number = {3},
pages = {735-757},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The $\circ $ operation and $*$ operation of Cohen-Macaulay bipartite graphs},
url = {http://eudml.org/doc/299300},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Yang, Yulong
AU - Zhu, Guangjun
AU - Cui, Yijun
AU - Duan, Shiya
TI - The $\circ $ operation and $*$ operation of Cohen-Macaulay bipartite graphs
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 3
SP - 735
EP - 757
AB - Let $G$ be a finite simple graph with the vertex set $V$ and let $I_G$ be its edge ideal in the polynomial ring $S= \mathbb {K} [V]$. We compute the depth and the Castelnuovo-Mumford regularity of $S/I_G$ when $G=G_1\circ G_2$ or $G=G_1* G_2$ is a graph obtained from Cohen-Macaulay bipartite graphs $G_1$, $G_2$ by the $\circ $ operation or $*$ operation, respectively.
LA - eng
KW - regularity; depth; $\circ $ operation; $*$ operation; Cohen-Macaulay bipartite graph
UR - http://eudml.org/doc/299300
ER -

References

top
  1. Banerjee, A., Beyarslan, S. K., Hà, H. T., 10.1007/978-3-030-11521-0_2, Advances in Algebra Springer Proceedings in Mathematics & Statistics 277. Springer, Cham (2019), 17-52. (2019) Zbl1418.13014MR3922638DOI10.1007/978-3-030-11521-0_2
  2. Bıyıkoğlu, T., Civan, Y., 10.37236/2387, Electron. J. Comb. 21 (2014), Article ID P1.1, 17 pages. (2014) Zbl1305.13007MR3177496DOI10.37236/2387
  3. Bolognini, D., Macchia, A., Strazzanti, F., 10.1016/j.ejc.2017.11.004, Eur. J. Comb. 70 (2018), 1-25. (2018) Zbl1384.05094MR3779601DOI10.1016/j.ejc.2017.11.004
  4. Bondy, J. A., Murty, U. S. R., 10.1007/978-1-84628-970-5, Graduate Texts in Mathematics 244. Springer, Berlin (2008). (2008) Zbl1134.05001MR2368647DOI10.1007/978-1-84628-970-5
  5. Francisco, C. A., Hà, H. T., Tuyl, A. Van, 10.1090/S0002-9939-09-09929-8, Proc. Am. Math. Soc. 137 (2009), 3271-3282. (2009) Zbl1180.13018MR2515396DOI10.1090/S0002-9939-09-09929-8
  6. Fouli, L., Hà, H. T., Morey, S., 10.1016/j.jalgebra.2020.03.027, J. Algebra 559 (2020), 33-57. (2020) Zbl1442.13029MR4093701DOI10.1016/j.jalgebra.2020.03.027
  7. Fouli, L., Morey, S., 10.1007/s10801-015-0604-3, J. Algebr. Comb. 42 (2015), 829-848. (2015) Zbl1330.05174MR3403183DOI10.1007/s10801-015-0604-3
  8. Hà, H. T., Tuyl, A. Van, 10.1007/s10801-007-0079-y, J. Algebr. Comb. 27 (2008), 215-245. (2008) Zbl1147.05051MR2375493DOI10.1007/s10801-007-0079-y
  9. Herzog, J., 10.1080/00927870601139500, Commun. Algebra 35 (2007), 1747-1756. (2007) Zbl1121.13013MR2317642DOI10.1080/00927870601139500
  10. Herzog, J., Hibi, T., 10.1007/s10801-005-4528-1, J. Algebr. Comb. 22 (2005), 289-302. (2005) Zbl1090.13017MR2181367DOI10.1007/s10801-005-4528-1
  11. Herzog, J., Hibi, T., 10.1007/978-0-85729-106-6, Graduate Texts in Mathematics 260. Springer, London (2011). (2011) Zbl1206.13001MR2724673DOI10.1007/978-0-85729-106-6
  12. Herzog, J., Moradi, S., Rahimbeigi, M., 10.1216/jca.2022.14.27, J. Commut. Algebra 14 (2022), 27-35. (2022) Zbl1492.13026MR4436334DOI10.1216/jca.2022.14.27
  13. Hoa, L. T., Tam, N. D., 10.1007/s00013-010-0112-6, Arch. Math. 94 (2010), 327-337. (2010) Zbl1191.13032MR2643966DOI10.1007/s00013-010-0112-6
  14. Kalai, G., Meshulam, R., 10.1016/j.jcta.2006.01.005, J. Comb. Theory, Ser. A 113 (2006), 1586-1592. (2006) Zbl1105.13026MR2259083DOI10.1016/j.jcta.2006.01.005
  15. Katzman, M., 10.1016/j.jcta.2005.04.005, J. Comb. Theory, Ser. A 113 (2006), 435-454. (2006) Zbl1102.13024MR2209703DOI10.1016/j.jcta.2005.04.005
  16. Khosh-Ahang, F., Moradi, S., 10.1090/S0002-9939-2014-11906-X, Proc. Am. Math. Soc. 142 (2014), 1567-1576. (2014) Zbl1297.13019MR3168464DOI10.1090/S0002-9939-2014-11906-X
  17. Kummini, M., 10.1007/s10801-009-0171-6, J. Algebr. Comb. 30 (2009), 429-445. (2009) Zbl1203.13018MR2563135DOI10.1007/s10801-009-0171-6
  18. Mahmoudi, M., Mousivand, A., Crupi, M., Rinaldo, G., Terai, N., Yassemi, S., 10.1016/j.jpaa.2011.02.005, J. Pure Appl. Algebra 215 (2011), 2473-2480. (2011) Zbl1227.13017MR2793950DOI10.1016/j.jpaa.2011.02.005
  19. Morey, S., Villarreal, R. H., 10.1515/9783110250404.85, Progress in Commutative Algebra 1 Walter de Gruyter, Berlin (2012), 85-126. (2012) Zbl1246.13001MR2932582DOI10.1515/9783110250404.85
  20. Shen, Y. H., Zhu, G., 10.48550/arXiv.2305.05365, Available at https://arxiv.org/abs/2305.05365 (2023), 31 pages. (2023) MR4794080DOI10.48550/arXiv.2305.05365
  21. Tuyl, A. Van, 10.1007/s00013-009-0049-9, Arch. Math. 93 (2009), 451-459. (2009) Zbl1184.13062MR2563591DOI10.1007/s00013-009-0049-9
  22. Villarreal, R. H., Monomial Algebras, Pure and Applied Mathematics, Marcel Dekker 238. Marcel Dekker, New York (2001). (2001) Zbl1002.13010MR1800904
  23. Woodroofe, R., 10.1216/JCA-2014-6-2-287, J. Commut. Algebra 6 (2014), 287-304. (2014) Zbl1330.13040MR3249840DOI10.1216/JCA-2014-6-2-287
  24. Zhu, G., 10.1142/S0219498818500688, J. Algebra Appl. 17 (2018), Article ID 1850068, 15 pages. (2018) Zbl1394.13019MR3786747DOI10.1142/S0219498818500688
  25. Zhu, G., 10.1142/S0219498818501888, J. Algebra Appl. 17 (2018), Article ID 1850188, 22 pages. (2018) Zbl1407.13014MR3866761DOI10.1142/S0219498818501888
  26. Zhu, G., Cui, Y., Yang, Y., Yang, Y., 10.48550/arXiv.2308.06010, Available at https://arxiv.org/abs/2308.06010 (2023), 18 pages. (2023) DOI10.48550/arXiv.2308.06010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.