-limited-like properties on Banach spaces
Commentationes Mathematicae Universitatis Carolinae (2023)
- Volume: 64, Issue: 4, page 439-457
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGhenciu, Ioana. "$L$-limited-like properties on Banach spaces." Commentationes Mathematicae Universitatis Carolinae 64.4 (2023): 439-457. <http://eudml.org/doc/299320>.
@article{Ghenciu2023,
abstract = {We study weakly precompact sets and operators. We show that an operator is weakly precompact if and only if its adjoint is pseudo weakly compact. We study Banach spaces with the $p$-$L$-limited$^*$ and the $p$-(SR$^*$) properties and characterize these classes of Banach spaces in terms of $p$-$L$-limited$^*$ and $p$-Right$^*$ subsets. The $p$-$L$-limited$^*$ property is studied in some spaces of operators.},
author = {Ghenciu, Ioana},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$p$-Right$^*$ set; Right$^*$ set; DP $p$-convergent operator; weakly precompact operator; limited $p$-convergent operator},
language = {eng},
number = {4},
pages = {439-457},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {$L$-limited-like properties on Banach spaces},
url = {http://eudml.org/doc/299320},
volume = {64},
year = {2023},
}
TY - JOUR
AU - Ghenciu, Ioana
TI - $L$-limited-like properties on Banach spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 4
SP - 439
EP - 457
AB - We study weakly precompact sets and operators. We show that an operator is weakly precompact if and only if its adjoint is pseudo weakly compact. We study Banach spaces with the $p$-$L$-limited$^*$ and the $p$-(SR$^*$) properties and characterize these classes of Banach spaces in terms of $p$-$L$-limited$^*$ and $p$-Right$^*$ subsets. The $p$-$L$-limited$^*$ property is studied in some spaces of operators.
LA - eng
KW - $p$-Right$^*$ set; Right$^*$ set; DP $p$-convergent operator; weakly precompact operator; limited $p$-convergent operator
UR - http://eudml.org/doc/299320
ER -
References
top- Alikhani M., 10.2298/FIL1914461A, Filomat 33 (2019), no. 14, 4461–4474. MR4049162DOI10.2298/FIL1914461A
- Andrews K. T., 10.1007/BF01406706, Math. Ann. 241 (1979), no. 1, 35–41. MR0531148DOI10.1007/BF01406706
- Bator E., Lewis P., Ochoa J., 10.4064/cm-78-1-1-17, Colloq. Math. 78 (1998), no. 1, 1–17. Zbl0948.46008MR1658115DOI10.4064/cm-78-1-1-17
- Bourgain J., Delbaen F., 10.1007/BF02414188, Acta Math. 145 (1980), no. 3–4, 155–176. MR0590288DOI10.1007/BF02414188
- Bourgain J., Diestel J., 10.1002/mana.19841190105, Math. Nachr. 119 (1984), 55–58. Zbl0601.47019MR0774176DOI10.1002/mana.19841190105
- Carrión H., Galindo P., Lourenço M., 10.4064/sm184-3-1, Studia Math. 184 (2008), no. 3, 205–216. MR2369139DOI10.4064/sm184-3-1
- Castillo J. M. F., Sanchez F., Dunford–Pettis like properties of continuous vector function spaces, Rev. Mat. Univ. Complut. Madrid 6 (1993), no. 1, 43–59. MR1245024
- Cembranos P., contains a complemented copy of , Proc. Amer. Math. Soc. 91 (1984), no. 4, 556–558. MR0746089
- Cilia R., Emmanuele G., 10.4064/cm6184-12-2015, Colloq. Math. 146 (2017), no. 2, 239–252. MR3622375DOI10.4064/cm6184-12-2015
- Dehghani M., Dehghani M. B., Moshtaghioun M. S., Sequentially right Banach spaces of order , Comment. Math. Univ. Carolin. 61 (2020), no. 1, 51–67. MR4093429
- Diestel J., A survey of results related to the Dunford–Pettis property, Proc. of Conf. on Integration, Topology, and Geometry in Linear Spaces, Univ. North Carolina, Chapel Hill, N.C., 1979, Contemp. Math., 2, Amer. Math. Soc., Providence, 1980, pages 15–60. MR0621850
- Diestel J., Jarchow H., Tonge A., Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995. Zbl1139.47021MR1342297
- Drewnowski L., Emmanuele G., 10.1007/BF02850021, Rend. Circ. Mat. Palermo (2) 38 (1989), no. 3, 377–391. MR1053378DOI10.1007/BF02850021
- Emmanuele G., 10.1007/BF01190118, Arch. Math. (Basel) 58 (1992), no. 5, 477–485. MR1156580DOI10.1007/BF01190118
- Fourie J. H., Zeekoei E. D., 10.2989/16073606.2013.779611, Quaest. Math. 37 (2014), no. 3, 349–358. MR3285289DOI10.2989/16073606.2013.779611
- Fourie J. H., Zeekoei E. D., 10.2989/16073606.2017.1301591, Quaest. Math. 40 (2017), no. 5, 563–579. MR3691468DOI10.2989/16073606.2017.1301591
- Ghenciu I., 10.4064/cm138-2-10, Colloq. Math. 138 (2015), no. 2, 255–269. MR3312111DOI10.4064/cm138-2-10
- Ghenciu I., 10.1007/s00605-016-0884-2, Monatsh. Math. 181 (2016), no. 3, 609–628. MR3552802DOI10.1007/s00605-016-0884-2
- Ghenciu I., A note on some isomorphic properties in projective tensor products, Extracta Math. 32 (2017), no. 1, 1–24. MR3726522
- Ghenciu I., 10.1007/s10474-018-0836-5, Acta Math. Hungar. 155 (2018), no. 2, 439–457. MR3831309DOI10.1007/s10474-018-0836-5
- Ghenciu I., 10.15352/aot.1802-1318, Adv. Oper. Theory 4 (2019), no. 2, 369–387. MR3883141DOI10.15352/aot.1802-1318
- Ghenciu I., 10.1007/s00605-022-01738-6, Monatsh. Math. 200 (2023), no. 2, 255–270. MR4544297DOI10.1007/s00605-022-01738-6
- Ghenciu I., Lewis P., 10.4064/ba54-3-6, Bull. Pol. Acad. Sci. Math. 54 (2006), no. 3–4, 237–256. Zbl1118.46016MR2287199DOI10.4064/ba54-3-6
- Ghenciu I., Lewis P., 10.4064/cm126-2-7, Colloq. Math. 126 (2012), no. 2, 231–256. Zbl1256.46009MR2924252DOI10.4064/cm126-2-7
- Ghenciu I., Popescu R., 10.2989/16073606.2023.2182243, Quaest. Math. 47 (2024), no. 1, 21–42. MR4713267DOI10.2989/16073606.2023.2182243
- Kačena M., On sequentially right Banach spaces, Extracta Math. 26 (2011), no. 1, 1–27. MR2908388
- Karn A. K., Sinha D. P., 10.1017/S0017089513000360, Glasg. Math. J. 56 (2014), no. 2, 427–437. MR3187909DOI10.1017/S0017089513000360
- Li L., Chen D., Chavez-Dominguez J. A., 10.1002/mana.201600335, Math. Nachr. 291 (2018), no. 2–3, 420–442. MR3767145DOI10.1002/mana.201600335
- Pełczyński A., Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648. Zbl0107.32504MR0149295
- Peralta A. M., Villanueva I., Wright J. D. M., Ylinen K., 10.1016/j.jmaa.2006.02.066, J. Math. Anal. Appl. 325 (2007), no. 2, 968–974. MR2270063DOI10.1016/j.jmaa.2006.02.066
- Rosenthal H. P., 10.2307/2373824, Amer. J. Math. 99 (1977), no. 2, 362–378. MR0438113DOI10.2307/2373824
- Salimi M., Moshtaghiun S. M., A new class of Banach spaces and its relation with some geometric properties of Banach spaces, Abstr. Appl. Anal. (2012), Art. ID 212957, 8 pages. MR2910729
- Wojtaszczyk P., Banach Spaces for Analysts, Cambridge Studies in Advanced Mathematics, 25, Cambridge University Press, Cambridge, 1991. MR1144277
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.