Evaluation maps, restriction maps, and compactness
Elizabeth Bator; Paul Lewis; James Ochoa
Colloquium Mathematicae (1998)
- Volume: 78, Issue: 1, page 1-17
- ISSN: 0010-1354
Access Full Article
topHow to cite
topBator, Elizabeth, Lewis, Paul, and Ochoa, James. "Evaluation maps, restriction maps, and compactness." Colloquium Mathematicae 78.1 (1998): 1-17. <http://eudml.org/doc/210601>.
@article{Bator1998,
author = {Bator, Elizabeth, Lewis, Paul, Ochoa, James},
journal = {Colloquium Mathematicae},
keywords = {evaluation map; restriction map; weak compactness; Dunford-Pettis property},
language = {eng},
number = {1},
pages = {1-17},
title = {Evaluation maps, restriction maps, and compactness},
url = {http://eudml.org/doc/210601},
volume = {78},
year = {1998},
}
TY - JOUR
AU - Bator, Elizabeth
AU - Lewis, Paul
AU - Ochoa, James
TI - Evaluation maps, restriction maps, and compactness
JO - Colloquium Mathematicae
PY - 1998
VL - 78
IS - 1
SP - 1
EP - 17
LA - eng
KW - evaluation map; restriction map; weak compactness; Dunford-Pettis property
UR - http://eudml.org/doc/210601
ER -
References
top- [1] D. Amir and J. Lindenstrauss, The structure of weakly compact sets in Banach spaces, Ann. of Math. 88 (1968), 35-46. Zbl0164.14903
- [2] K. Andrews, Dunford-Pettis sets in the space of Bochner integrable functions, Math. Ann. 241 (1979), 35-41. Zbl0398.46025
- [3] R. G. Bartle, N. Dunford and J. Schwartz, Weak compactness and vector measures, Canad. J. Math. 7 (1955), 289-305. Zbl0068.09301
- [4] E. M. Bator, Remarks on completely continuous operators, Bull. Polish Acad. Sci. Math. 37 (1987), 409-413. Zbl0767.46010
- [5] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164.
- [6] R. G. Bilyeu and P. W. Lewis, Some mapping properties of representing measures, Ann. Mat. Pura Appl. 109 (1976), 273-287. Zbl0336.46048
- [7] R. G. Bilyeu and P. W. Lewis, Vector measures and weakly compact operators on continuous function spaces: A survey, in: Measure Theory and its Applications, Proc. Measure Theory Conf., DeKalb, Ill., 1980, G. A. Goldin and R. F. Wheeler (eds.), Northern Illinois Univ., DeKalb, Ill, 1981, 165-172.
- [8] F. Bombal, On (V*) sets and Pełczyński's property (V*), Glasgow Math. J. 32 (1990), 109-120.
- [9] F. Bombal, On (V) and (V*) sets in vector-valued function spaces, preprint. Zbl0768.46025
- [10] J. Bourgain and F. Delbaen, A class of special spaces, Acta Math. 145 (1981), 155-176. Zbl0466.46024
- [11] J. Bourgain and J. Diestel, Limited operators and strict cosingularity, Math. Nachr. 119 (1984), 55-58. Zbl0601.47019
- [12] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, 1984.
- [13] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., 1977.
- [14] S. Dineen, Complex Analysis in Locally Convex Spaces, North-Holland Math. Stud. 57, North-Holland, New York, 1981. Zbl0484.46044
- [15] N. Dunford and J. T. Schwartz, Linear Operators. I. General Theory, Pure and Appl. Math. 7, Interscience, New York, 1958. Zbl0084.10402
- [16] J. Elton and E. Odell, The unit ball of every infinite-dimensional normed linear space contains a (1+ ε)-separated sequence, Colloq. Math. 44 (1981), 105-109. Zbl0493.46014
- [17] G. Emmanuele, A dual characterization of Banach spaces not containing , Bull. Polish Acad. Sci. Math. 34 (1986), 155-160. Zbl0625.46026
- [18] G. Emmanuele, On the reciprocal Dunford-Pettis property in projective tensor products, Math. Proc. Cambridge Philos. Soc. 109 (1991), 161-166. Zbl0752.46042
- [19] G. Emmanuele, Banach spaces on which Dunford-Pettis sets are relatively compact, Arch. Math. (Basel) 58 (1992), 477-485. Zbl0761.46010
- [20] G. Emmanuele, personal communication.
- [21] A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type C(K), Canad. J. Math. 5 (1953), 129-173. Zbl0050.10902
- [22] J. Hagler and W. B. Johnson, On Banach spaces whose dual balls are not weak* sequentially compact, Israel J. Math. 28 (1977), 325-330. Zbl0365.46019
- [23] R. C. James, A non-reflexive Banach space isometric with its second conjugate, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 174-177. Zbl0042.36102
- [24] R. C. James, Separable conjugate spaces, Pacific J. Math. 10 (1960), 563-571. Zbl0096.31301
- [25] T. Leavelle, The reciprocal Dunford-Pettis and Radon-Nikodym properties in Banach spaces, Ph.D. dissertation, Univ. of North Texas, 1984.
- [26] E. Odell and H. P. Rosenthal, A double-dual characterization of separable Banach spaces containing , Israel J. Math. 20 (1975), 375-384. Zbl0312.46031
- [27] A. Pełczyński, Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641-648. Zbl0107.32504
- [28] A. Pełczyński, On strictly singular and stictly cosingular operators. II, ibid. 13 (1965), 37-41. Zbl0138.38604
- [29] H. Rosenthal, A characterization of Banach spaces containing , Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411-2413. Zbl0297.46013
- [30] H. Rosenthal, Pointwise compact subsets of the first Baire class, Amer. J. Math. 99 (1977), 362-378. Zbl0392.54009
- [31] E. Saab, Some characterizations of weak Radon-Nikodym sets, Proc. Amer. Math. Soc. 86 (1982), 307-311. Zbl0494.46047
- [32] I. Singer, Bases in Banach Spaces II, Springer, 1981. Zbl0467.46020
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.