Evaluation maps, restriction maps, and compactness

Elizabeth Bator; Paul Lewis; James Ochoa

Colloquium Mathematicae (1998)

  • Volume: 78, Issue: 1, page 1-17
  • ISSN: 0010-1354

How to cite

top

Bator, Elizabeth, Lewis, Paul, and Ochoa, James. "Evaluation maps, restriction maps, and compactness." Colloquium Mathematicae 78.1 (1998): 1-17. <http://eudml.org/doc/210601>.

@article{Bator1998,
author = {Bator, Elizabeth, Lewis, Paul, Ochoa, James},
journal = {Colloquium Mathematicae},
keywords = {evaluation map; restriction map; weak compactness; Dunford-Pettis property},
language = {eng},
number = {1},
pages = {1-17},
title = {Evaluation maps, restriction maps, and compactness},
url = {http://eudml.org/doc/210601},
volume = {78},
year = {1998},
}

TY - JOUR
AU - Bator, Elizabeth
AU - Lewis, Paul
AU - Ochoa, James
TI - Evaluation maps, restriction maps, and compactness
JO - Colloquium Mathematicae
PY - 1998
VL - 78
IS - 1
SP - 1
EP - 17
LA - eng
KW - evaluation map; restriction map; weak compactness; Dunford-Pettis property
UR - http://eudml.org/doc/210601
ER -

References

top
  1. [1] D. Amir and J. Lindenstrauss, The structure of weakly compact sets in Banach spaces, Ann. of Math. 88 (1968), 35-46. Zbl0164.14903
  2. [2] K. Andrews, Dunford-Pettis sets in the space of Bochner integrable functions, Math. Ann. 241 (1979), 35-41. Zbl0398.46025
  3. [3] R. G. Bartle, N. Dunford and J. Schwartz, Weak compactness and vector measures, Canad. J. Math. 7 (1955), 289-305. Zbl0068.09301
  4. [4] E. M. Bator, Remarks on completely continuous operators, Bull. Polish Acad. Sci. Math. 37 (1987), 409-413. Zbl0767.46010
  5. [5] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164. 
  6. [6] R. G. Bilyeu and P. W. Lewis, Some mapping properties of representing measures, Ann. Mat. Pura Appl. 109 (1976), 273-287. Zbl0336.46048
  7. [7] R. G. Bilyeu and P. W. Lewis, Vector measures and weakly compact operators on continuous function spaces: A survey, in: Measure Theory and its Applications, Proc. Measure Theory Conf., DeKalb, Ill., 1980, G. A. Goldin and R. F. Wheeler (eds.), Northern Illinois Univ., DeKalb, Ill, 1981, 165-172. 
  8. [8] F. Bombal, On (V*) sets and Pełczyński's property (V*), Glasgow Math. J. 32 (1990), 109-120. 
  9. [9] F. Bombal, On (V) and (V*) sets in vector-valued function spaces, preprint. Zbl0768.46025
  10. [10] J. Bourgain and F. Delbaen, A class of special spaces, Acta Math. 145 (1981), 155-176. Zbl0466.46024
  11. [11] J. Bourgain and J. Diestel, Limited operators and strict cosingularity, Math. Nachr. 119 (1984), 55-58. Zbl0601.47019
  12. [12] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, 1984. 
  13. [13] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., 1977. 
  14. [14] S. Dineen, Complex Analysis in Locally Convex Spaces, North-Holland Math. Stud. 57, North-Holland, New York, 1981. Zbl0484.46044
  15. [15] N. Dunford and J. T. Schwartz, Linear Operators. I. General Theory, Pure and Appl. Math. 7, Interscience, New York, 1958. Zbl0084.10402
  16. [16] J. Elton and E. Odell, The unit ball of every infinite-dimensional normed linear space contains a (1+ ε)-separated sequence, Colloq. Math. 44 (1981), 105-109. Zbl0493.46014
  17. [17] G. Emmanuele, A dual characterization of Banach spaces not containing l 1 , Bull. Polish Acad. Sci. Math. 34 (1986), 155-160. Zbl0625.46026
  18. [18] G. Emmanuele, On the reciprocal Dunford-Pettis property in projective tensor products, Math. Proc. Cambridge Philos. Soc. 109 (1991), 161-166. Zbl0752.46042
  19. [19] G. Emmanuele, Banach spaces on which Dunford-Pettis sets are relatively compact, Arch. Math. (Basel) 58 (1992), 477-485. Zbl0761.46010
  20. [20] G. Emmanuele, personal communication. 
  21. [21] A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type C(K), Canad. J. Math. 5 (1953), 129-173. Zbl0050.10902
  22. [22] J. Hagler and W. B. Johnson, On Banach spaces whose dual balls are not weak* sequentially compact, Israel J. Math. 28 (1977), 325-330. Zbl0365.46019
  23. [23] R. C. James, A non-reflexive Banach space isometric with its second conjugate, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 174-177. Zbl0042.36102
  24. [24] R. C. James, Separable conjugate spaces, Pacific J. Math. 10 (1960), 563-571. Zbl0096.31301
  25. [25] T. Leavelle, The reciprocal Dunford-Pettis and Radon-Nikodym properties in Banach spaces, Ph.D. dissertation, Univ. of North Texas, 1984. 
  26. [26] E. Odell and H. P. Rosenthal, A double-dual characterization of separable Banach spaces containing l 1 , Israel J. Math. 20 (1975), 375-384. Zbl0312.46031
  27. [27] A. Pełczyński, Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641-648. Zbl0107.32504
  28. [28] A. Pełczyński, On strictly singular and stictly cosingular operators. II, ibid. 13 (1965), 37-41. Zbl0138.38604
  29. [29] H. Rosenthal, A characterization of Banach spaces containing l 1 , Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411-2413. Zbl0297.46013
  30. [30] H. Rosenthal, Pointwise compact subsets of the first Baire class, Amer. J. Math. 99 (1977), 362-378. Zbl0392.54009
  31. [31] E. Saab, Some characterizations of weak Radon-Nikodym sets, Proc. Amer. Math. Soc. 86 (1982), 307-311. Zbl0494.46047
  32. [32] I. Singer, Bases in Banach Spaces II, Springer, 1981. Zbl0467.46020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.