Error estimation for finite element solutions on meshes that contain thin elements

Kenta Kobayashi; Takuya Tsuchiya

Applications of Mathematics (2024)

  • Volume: 69, Issue: 5, page 571-588
  • ISSN: 0862-7940

Abstract

top
In an error estimation of finite element solutions to the Poisson equation, we usually impose the shape regularity assumption on the meshes to be used. In this paper, we show that even if the shape regularity condition is violated, the standard error estimation can be obtained if ``bad'' elements that violate the shape regularity or maximum angle condition are covered virtually by simplices that satisfy the minimum angle condition. A numerical experiment illustrates the theoretical result.

How to cite

top

Kobayashi, Kenta, and Tsuchiya, Takuya. "Error estimation for finite element solutions on meshes that contain thin elements." Applications of Mathematics 69.5 (2024): 571-588. <http://eudml.org/doc/299321>.

@article{Kobayashi2024,
abstract = {In an error estimation of finite element solutions to the Poisson equation, we usually impose the shape regularity assumption on the meshes to be used. In this paper, we show that even if the shape regularity condition is violated, the standard error estimation can be obtained if ``bad'' elements that violate the shape regularity or maximum angle condition are covered virtually by simplices that satisfy the minimum angle condition. A numerical experiment illustrates the theoretical result.},
author = {Kobayashi, Kenta, Tsuchiya, Takuya},
journal = {Applications of Mathematics},
keywords = {finite element method; triangulation; minimum and maximum angle condition; shape regularity condition; bad triangles},
language = {eng},
number = {5},
pages = {571-588},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Error estimation for finite element solutions on meshes that contain thin elements},
url = {http://eudml.org/doc/299321},
volume = {69},
year = {2024},
}

TY - JOUR
AU - Kobayashi, Kenta
AU - Tsuchiya, Takuya
TI - Error estimation for finite element solutions on meshes that contain thin elements
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 5
SP - 571
EP - 588
AB - In an error estimation of finite element solutions to the Poisson equation, we usually impose the shape regularity assumption on the meshes to be used. In this paper, we show that even if the shape regularity condition is violated, the standard error estimation can be obtained if ``bad'' elements that violate the shape regularity or maximum angle condition are covered virtually by simplices that satisfy the minimum angle condition. A numerical experiment illustrates the theoretical result.
LA - eng
KW - finite element method; triangulation; minimum and maximum angle condition; shape regularity condition; bad triangles
UR - http://eudml.org/doc/299321
ER -

References

top
  1. Apel, T., Anisotropic Finite Element: Local Estimates and Applications, Advances in Numerical Mathematics. B. G. Teubner, Leipzig (1999). (1999) Zbl0934.65121MR1716824
  2. Babuška, I., Aziz, A. K., 10.1137/0713021, SIAM J. Numer. Anal. 13 (1976), 214-226. (1976) Zbl0324.65046MR0455462DOI10.1137/0713021
  3. Brandts, J., Korotov, S., Křížek, M., 10.1016/j.camwa.2007.11.010, Comput. Math. Appl. 55 (2008), 2227-2233. (2008) Zbl1142.65443MR2413688DOI10.1016/j.camwa.2007.11.010
  4. Brenner, S. C., Scott, L. R., 10.1007/978-0-387-75934-0, Texts in Applied Mathematics 15. Springer, New York (2008). (2008) Zbl1135.65042MR2373954DOI10.1007/978-0-387-75934-0
  5. Brezis, H., 10.1007/978-0-387-70914-7, Universitext. Springer, New York (2011). (2011) Zbl1220.46002MR2759829DOI10.1007/978-0-387-70914-7
  6. Ciarlet, P. G., 10.1137/1.9780898719208, Studies in Mathematics and Its Applications 4. North Holand, Amsterdam (1978). (1978) Zbl0383.65058MR0520174DOI10.1137/1.9780898719208
  7. Duprez, M., Lleras, V., Lozinski, A., 10.1051/m2an/2019023, ESAIM, Math. Model. Numer. Anal. 53 (2019), 1871-1891. (2019) Zbl1434.65250MR4019760DOI10.1051/m2an/2019023
  8. Durán, R. G., 10.1090/S0025-5718-99-00994-1, Math. Comput. 68 (1999), 187-199. (1999) Zbl0910.65078MR1489970DOI10.1090/S0025-5718-99-00994-1
  9. Ern, A., Guermond, J.-L., 10.1007/978-1-4757-4355-5, Applied Mathematical Sciences 159. Springer, New York (2004). (2004) Zbl1059.65103MR2050138DOI10.1007/978-1-4757-4355-5
  10. Hannukainen, A., Korotov, S., Křížek, M., 10.1007/s00211-011-0403-2, Numer. Math. 120 (2012), 79-88. (2012) Zbl1255.65196MR2885598DOI10.1007/s00211-011-0403-2
  11. Jamet, P., 10.1051/m2an/197610R100431, Rev. Franc. Automat. Inform. Rech. Operat., Analyse numer. 10 (1976), 43-60 French. (1976) Zbl0346.65052MR0455282DOI10.1051/m2an/197610R100431
  12. Kobayashi, K., Tsuchiya, T., 10.1007/s10492-016-0125-y, Appl. Math., Praha 61 (2016), 121-133. (2016) Zbl1413.65019MR3470770DOI10.1007/s10492-016-0125-y
  13. Kobayashi, K., Tsuchiya, T., 10.1016/j.jat.2019.105302, J. Approx. Theory 249 (2020), Article ID 105302, 20 pages. (2020) Zbl07135029MR4017412DOI10.1016/j.jat.2019.105302
  14. Křížek, M., 10.21136/AM.1991.104461, Appl. Math., Praha 36 (1991), 223-232. (1991) Zbl0728.41003MR1109126DOI10.21136/AM.1991.104461
  15. Křížek, M., 10.1137/0729031, SIAM J. Numer. Anal. 29 (1992), 513-520. (1992) Zbl0755.41003MR1154279DOI10.1137/0729031
  16. Kučera, V., 10.48550/arXiv.1601.02942, Available at https://arxiv.org/abs/1601.02942 (2016), 42 pages. (2016) MR3700195DOI10.48550/arXiv.1601.02942
  17. Shenk, N. A., 10.1090/S0025-5718-1994-1226816-5, Math. Comput. 63 (1994), 105-119. (1994) Zbl0807.65003MR1226816DOI10.1090/S0025-5718-1994-1226816-5

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.