Error estimation for finite element solutions on meshes that contain thin elements
Kenta Kobayashi; Takuya Tsuchiya
Applications of Mathematics (2024)
- Volume: 69, Issue: 5, page 571-588
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKobayashi, Kenta, and Tsuchiya, Takuya. "Error estimation for finite element solutions on meshes that contain thin elements." Applications of Mathematics 69.5 (2024): 571-588. <http://eudml.org/doc/299321>.
@article{Kobayashi2024,
abstract = {In an error estimation of finite element solutions to the Poisson equation, we usually impose the shape regularity assumption on the meshes to be used. In this paper, we show that even if the shape regularity condition is violated, the standard error estimation can be obtained if ``bad'' elements that violate the shape regularity or maximum angle condition are covered virtually by simplices that satisfy the minimum angle condition. A numerical experiment illustrates the theoretical result.},
author = {Kobayashi, Kenta, Tsuchiya, Takuya},
journal = {Applications of Mathematics},
keywords = {finite element method; triangulation; minimum and maximum angle condition; shape regularity condition; bad triangles},
language = {eng},
number = {5},
pages = {571-588},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Error estimation for finite element solutions on meshes that contain thin elements},
url = {http://eudml.org/doc/299321},
volume = {69},
year = {2024},
}
TY - JOUR
AU - Kobayashi, Kenta
AU - Tsuchiya, Takuya
TI - Error estimation for finite element solutions on meshes that contain thin elements
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 5
SP - 571
EP - 588
AB - In an error estimation of finite element solutions to the Poisson equation, we usually impose the shape regularity assumption on the meshes to be used. In this paper, we show that even if the shape regularity condition is violated, the standard error estimation can be obtained if ``bad'' elements that violate the shape regularity or maximum angle condition are covered virtually by simplices that satisfy the minimum angle condition. A numerical experiment illustrates the theoretical result.
LA - eng
KW - finite element method; triangulation; minimum and maximum angle condition; shape regularity condition; bad triangles
UR - http://eudml.org/doc/299321
ER -
References
top- Apel, T., Anisotropic Finite Element: Local Estimates and Applications, Advances in Numerical Mathematics. B. G. Teubner, Leipzig (1999). (1999) Zbl0934.65121MR1716824
- Babuška, I., Aziz, A. K., 10.1137/0713021, SIAM J. Numer. Anal. 13 (1976), 214-226. (1976) Zbl0324.65046MR0455462DOI10.1137/0713021
- Brandts, J., Korotov, S., Křížek, M., 10.1016/j.camwa.2007.11.010, Comput. Math. Appl. 55 (2008), 2227-2233. (2008) Zbl1142.65443MR2413688DOI10.1016/j.camwa.2007.11.010
- Brenner, S. C., Scott, L. R., 10.1007/978-0-387-75934-0, Texts in Applied Mathematics 15. Springer, New York (2008). (2008) Zbl1135.65042MR2373954DOI10.1007/978-0-387-75934-0
- Brezis, H., 10.1007/978-0-387-70914-7, Universitext. Springer, New York (2011). (2011) Zbl1220.46002MR2759829DOI10.1007/978-0-387-70914-7
- Ciarlet, P. G., 10.1137/1.9780898719208, Studies in Mathematics and Its Applications 4. North Holand, Amsterdam (1978). (1978) Zbl0383.65058MR0520174DOI10.1137/1.9780898719208
- Duprez, M., Lleras, V., Lozinski, A., 10.1051/m2an/2019023, ESAIM, Math. Model. Numer. Anal. 53 (2019), 1871-1891. (2019) Zbl1434.65250MR4019760DOI10.1051/m2an/2019023
- Durán, R. G., 10.1090/S0025-5718-99-00994-1, Math. Comput. 68 (1999), 187-199. (1999) Zbl0910.65078MR1489970DOI10.1090/S0025-5718-99-00994-1
- Ern, A., Guermond, J.-L., 10.1007/978-1-4757-4355-5, Applied Mathematical Sciences 159. Springer, New York (2004). (2004) Zbl1059.65103MR2050138DOI10.1007/978-1-4757-4355-5
- Hannukainen, A., Korotov, S., Křížek, M., 10.1007/s00211-011-0403-2, Numer. Math. 120 (2012), 79-88. (2012) Zbl1255.65196MR2885598DOI10.1007/s00211-011-0403-2
- Jamet, P., 10.1051/m2an/197610R100431, Rev. Franc. Automat. Inform. Rech. Operat., Analyse numer. 10 (1976), 43-60 French. (1976) Zbl0346.65052MR0455282DOI10.1051/m2an/197610R100431
- Kobayashi, K., Tsuchiya, T., 10.1007/s10492-016-0125-y, Appl. Math., Praha 61 (2016), 121-133. (2016) Zbl1413.65019MR3470770DOI10.1007/s10492-016-0125-y
- Kobayashi, K., Tsuchiya, T., 10.1016/j.jat.2019.105302, J. Approx. Theory 249 (2020), Article ID 105302, 20 pages. (2020) Zbl07135029MR4017412DOI10.1016/j.jat.2019.105302
- Křížek, M., 10.21136/AM.1991.104461, Appl. Math., Praha 36 (1991), 223-232. (1991) Zbl0728.41003MR1109126DOI10.21136/AM.1991.104461
- Křížek, M., 10.1137/0729031, SIAM J. Numer. Anal. 29 (1992), 513-520. (1992) Zbl0755.41003MR1154279DOI10.1137/0729031
- Kučera, V., 10.48550/arXiv.1601.02942, Available at https://arxiv.org/abs/1601.02942 (2016), 42 pages. (2016) MR3700195DOI10.48550/arXiv.1601.02942
- Shenk, N. A., 10.1090/S0025-5718-1994-1226816-5, Math. Comput. 63 (1994), 105-119. (1994) Zbl0807.65003MR1226816DOI10.1090/S0025-5718-1994-1226816-5
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.