Displaying similar documents to “On a probabilistic problem on finite semigroups”

Inverses of generators of nonanalytic semigroups

Ralph deLaubenfels (2009)

Studia Mathematica

Similarity:

Suppose A is an injective linear operator on a Banach space that generates a uniformly bounded strongly continuous semigroup e t A t 0 . It is shown that A - 1 generates an O ( 1 + τ ) A ( 1 - A ) - 1 -regularized semigroup. Several equivalences for A - 1 generating a strongly continuous semigroup are given. These are used to generate sufficient conditions on the growth of e t A t 0 , on subspaces, for A - 1 generating a strongly continuous semigroup, and to show that the inverse of -d/dx on the closure of its image in L¹([0,∞)) does not generate...

On the K-theory of the C * -algebra generated by the left regular representation of an Ore semigroup

Joachim Cuntz, Siegfried Echterhoff, Xin Li (2015)

Journal of the European Mathematical Society

Similarity:

We compute the K -theory of C * -algebras generated by the left regular representation of left Ore semigroups satisfying certain regularity conditions. Our result describes the K -theory of these semigroup C * -algebras in terms of the K -theory for the reduced group C * -algebras of certain groups which are typically easier to handle. Then we apply our result to specific semigroups from algebraic number theory.

A local Landau type inequality for semigroup orbits

Gerd Herzog, Peer Christian Kunstmann (2014)

Studia Mathematica

Similarity:

Given a strongly continuous semigroup ( S ( t ) ) t 0 on a Banach space X with generator A and an element f ∈ D(A²) satisfying | | S ( t ) f | | e - ω t | | f | | and | | S ( t ) A ² f | | e - ω t | | A ² f | | for all t ≥ 0 and some ω > 0, we derive a Landau type inequality for ||Af|| in terms of ||f|| and ||A²f||. This inequality improves on the usual Landau inequality that holds in the case ω = 0.

The algebra of the subspace semigroup of M ( q )

Jan Okniński (2002)

Colloquium Mathematicae

Similarity:

The semigroup S = S ( M ( q ) ) of subspaces of the algebra M ( q ) of 2 × 2 matrices over a finite field q is studied. The ideal structure of S, the regular -classes of S and the structure of the complex semigroup algebra ℂ[S] are described.

Analytic semigroups on vector valued noncommutative L p -spaces

Cédric Arhancet (2013)

Studia Mathematica

Similarity:

We give sufficient conditions on an operator space E and on a semigroup of operators on a von Neumann algebra M to obtain a bounded analytic or R-analytic semigroup ( ( T I d E ) t 0 on the vector valued noncommutative L p -space L p ( M , E ) . Moreover, we give applications to the H ( Σ θ ) functional calculus of the generators of these semigroups, generalizing some earlier work of M. Junge, C. Le Merdy and Q. Xu.

Operator theoretic properties of semigroups in terms of their generators

S. Blunck, L. Weis (2001)

Studia Mathematica

Similarity:

Let ( T t ) be a C₀ semigroup with generator A on a Banach space X and let be an operator ideal, e.g. the class of compact, Hilbert-Schmidt or trace class operators. We show that the resolvent R(λ,A) of A belongs to if and only if the integrated semigroup S t : = 0 t T s d s belongs to . For analytic semigroups, S t implies T t , and in this case we give precise estimates for the growth of the -norm of T t (e.g. the trace of T t ) in terms of the resolvent growth and the imbedding D(A) ↪ X.

On semigroups with an infinitesimal operator

Jolanta Olko (2005)

Annales Polonici Mathematici

Similarity:

Let F t : t 0 be an iteration semigroup of linear continuous set-valued functions. If the semigroup has an infinitesimal operator then it is a uniformly continuous semigroup majorized by an exponential semigroup. Moreover, for sufficiently small t every linear selection of F t is invertible and there exists an exponential semigroup f t : t 0 of linear continuous selections f t of F t .

Semigroups generated by convex combinations of several Feller generators in models of mathematical biology

Adam Bobrowski, Radosław Bogucki (2008)

Studia Mathematica

Similarity:

Let be a locally compact Hausdorff space. Let A i , i = 0,1,...,N, be generators of Feller semigroups in C₀() with related Feller processes X i = X i ( t ) , t 0 and let α i , i = 0,...,N, be non-negative continuous functions on with i = 0 N α i = 1 . Assume that the closure A of k = 0 N α k A k defined on i = 0 N ( A i ) generates a Feller semigroup T(t), t ≥ 0 in C₀(). A natural interpretation of a related Feller process X = X(t), t ≥ 0 is that it evolves according to the following heuristic rules: conditional on being at a point p ∈ , with probability...

Presentations for subsemigroups of P D n

Abdullahi Umar (2019)

Czechoslovak Mathematical Journal

Similarity:

Let [ n ] = { 1 , ... , n } be an n -chain. We give presentations for the following transformation semigroups: the semigroup of full order-decreasing mappings of [ n ] , the semigroup of partial one-to-one order-decreasing mappings of [ n ] , the semigroup of full order-preserving and order-decreasing mappings of [ n ] , the semigroup of partial one-to-one order-preserving and order-decreasing mappings of [ n ] , and the semigroup of partial order-preserving and order-decreasing mappings of [ n ] .

On the theory of remediability

Hassan Emamirad (2003)

Banach Center Publications

Similarity:

Suppose G ( t ) t 0 and G ( t ) t 0 are two families of semigroups on a Banach space X (not necessarily of class C₀) such that for some initial datum u₀, G₁(t)u₀ tends towards an undesirable state u*. After remedying by means of an operator ρ we continue the evolution of the state by applying G₂(t) and after time 2t we retrieve a prosperous state u given by u = G₂(t)ρG₁(t)u₀. Here we are concerned with various properties of the semigroup (t): ρ → G₂(t)ρG₁(t). We define (X) to be the space of remedial operators...

The covariety of perfect numerical semigroups with fixed Frobenius number

María Ángeles Moreno-Frías, José Carlos Rosales (2024)

Czechoslovak Mathematical Journal

Similarity:

Let S be a numerical semigroup. We say that h S is an isolated gap of S if { h - 1 , h + 1 } S . A numerical semigroup without isolated gaps is called a perfect numerical semigroup. Denote by m ( S ) the multiplicity of a numerical semigroup S . A covariety is a nonempty family 𝒞 of numerical semigroups that fulfills the following conditions: there exists the minimum of 𝒞 , the intersection of two elements of 𝒞 is again an element of 𝒞 , and S { m ( S ) } 𝒞 for all S 𝒞 such that S min ( 𝒞 ) . We prove that the set 𝒫 ( F ) = { S : S is a perfect numerical semigroup...

Growth of semigroups in discrete and continuous time

Alexander Gomilko, Hans Zwart, Niels Besseling (2011)

Studia Mathematica

Similarity:

We show that the growth rates of solutions of the abstract differential equations ẋ(t) = Ax(t), ( t ) = A - 1 x ( t ) , and the difference equation x d ( n + 1 ) = ( A + I ) ( A - I ) - 1 x d ( n ) are closely related. Assuming that A generates an exponentially stable semigroup, we show that on a general Banach space the lowest growth rate of the semigroup ( e A - 1 t ) t 0 is O(∜t), and for ( ( A + I ) ( A - I ) - 1 ) it is O(∜n). The similarity in growth holds for all Banach spaces. In particular, for Hilbert spaces the best estimates are O(log(t)) and O(log(n)), respectively. Furthermore,...

On left ϕ -biflat Banach algebras

Amir Sahami, Mehdi Rostami, Abdolrasoul Pourabbas (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study the notion of left ϕ -biflatness for Segal algebras and semigroup algebras. We show that the Segal algebra S ( G ) is left ϕ -biflat if and only if G is amenable. Also we characterize left ϕ -biflatness of semigroup algebra l 1 ( S ) in terms of biflatness, when S is a Clifford semigroup.

Relations on a lattice of varieties of completely regular semigroups

Mario Petrich (2020)

Mathematica Bohemica

Similarity:

Completely regular semigroups 𝒞ℛ are considered here with the unary operation of inversion within the maximal subgroups of the semigroup. This makes 𝒞ℛ a variety; its lattice of subvarieties is denoted by ( 𝒞ℛ ) . We study here the relations 𝐊 , T , L and 𝐂 relative to a sublattice Ψ of ( 𝒞ℛ ) constructed in a previous publication. For 𝐑 being any of these relations, we determine the 𝐑 -classes of all varieties in the lattice Ψ as well as the restrictions of 𝐑 to Ψ .

On smoothing properties of transition semigroups associated to a class of SDEs with jumps

Seiichiro Kusuoka, Carlo Marinelli (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We prove smoothing properties of nonlocal transition semigroups associated to a class of stochastic differential equations (SDE) in d driven by additive pure-jump Lévy noise. In particular, we assume that the Lévy process driving the SDE is the sum of a subordinated Wiener process Y (i.e. Y = W T , where T is an increasing pure-jump Lévy process starting at zero and independent of the Wiener process W ) and of an arbitrary Lévy process independent of Y , that the drift coefficient is continuous...