An entropy stable finite volume method for a compressible two phase model

Eduard Feireisl; Mădălina Petcu; Bangwei She

Applications of Mathematics (2023)

  • Volume: 68, Issue: 4, page 467-483
  • ISSN: 0862-7940

Abstract

top
We study a binary mixture of compressible viscous fluids modelled by the Navier-Stokes-Allen-Cahn system with isentropic or ideal gas law. We propose a finite volume method for the approximation of the system based on upwinding and artificial diffusion approaches. We prove the entropy stability of the numerical method and present several numerical experiments to support the theory.

How to cite

top

Feireisl, Eduard, Petcu, Mădălina, and She, Bangwei. "An entropy stable finite volume method for a compressible two phase model." Applications of Mathematics 68.4 (2023): 467-483. <http://eudml.org/doc/299334>.

@article{Feireisl2023,
abstract = {We study a binary mixture of compressible viscous fluids modelled by the Navier-Stokes-Allen-Cahn system with isentropic or ideal gas law. We propose a finite volume method for the approximation of the system based on upwinding and artificial diffusion approaches. We prove the entropy stability of the numerical method and present several numerical experiments to support the theory.},
author = {Feireisl, Eduard, Petcu, Mădălina, She, Bangwei},
journal = {Applications of Mathematics},
keywords = {compressible Navier-Stokes-Allen-Cahn; finite volume method; entropy stability},
language = {eng},
number = {4},
pages = {467-483},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An entropy stable finite volume method for a compressible two phase model},
url = {http://eudml.org/doc/299334},
volume = {68},
year = {2023},
}

TY - JOUR
AU - Feireisl, Eduard
AU - Petcu, Mădălina
AU - She, Bangwei
TI - An entropy stable finite volume method for a compressible two phase model
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 4
SP - 467
EP - 483
AB - We study a binary mixture of compressible viscous fluids modelled by the Navier-Stokes-Allen-Cahn system with isentropic or ideal gas law. We propose a finite volume method for the approximation of the system based on upwinding and artificial diffusion approaches. We prove the entropy stability of the numerical method and present several numerical experiments to support the theory.
LA - eng
KW - compressible Navier-Stokes-Allen-Cahn; finite volume method; entropy stability
UR - http://eudml.org/doc/299334
ER -

References

top
  1. Abels, H., Feireisl, E., 10.1512/iumj.2008.57.3391, Indiana Univ. Math. J. 57 (2008), 659-698. (2008) Zbl1144.35041MR2414331DOI10.1512/iumj.2008.57.3391
  2. Blesgen, T., 10.1088/0022-3727/32/10/307, J. Phys. D, Appl. Phys. 32 (1999), 1119-1123. (1999) DOI10.1088/0022-3727/32/10/307
  3. Ciarlet, P. G., 10.1137/1.9780898719208, Classics in Applied Mathematics 40. SIAM, Philadelphia (2002). (2002) Zbl0999.65129MR1930132DOI10.1137/1.9780898719208
  4. Lukáčová-Medviďová, E. Feireisl M., Mizerová, H., She, B., 10.1051/m2an/2019043, ESAIM, Math. Model. Numer. Anal. 53 (2019), 1957-1979 DOI 10.1051/m2an/2019043 Experiment 2: time evolution of , from top to bottom are . (2019) Zbl1447.35243MR4031688DOI10.1051/m2an/2019043
  5. Feireisl, E., Lukáčová-Medviďová, M., Mizerová, H., She, B., 10.1007/978-3-030-73788-7, MS&A. Modeling, Simulation and Applications 20. Springer, Cham (2021). (2021) Zbl1493.76001MR4390192DOI10.1007/978-3-030-73788-7
  6. Feireisl, E., Lukáčová-Medviďová, M., Mizerová, H., She, B., 10.1093/imanum/draa060, IMA J. Numer. Anal. 41 (2021), 2388-2422. (2021) Zbl07528308MR4328388DOI10.1093/imanum/draa060
  7. Feireisl, E., Petcu, M., Pražák, D., 10.1002/mma.5436, Math. Methods Appl. Sci. 42 (2019), 1465-1479. (2019) Zbl1420.35185MR3928163DOI10.1002/mma.5436
  8. Feireisl, E., Petcu, M., She, B., 10.1007/s10915-021-01624-7, J. Sci. Comput. 89 (2021), Article ID 14, 32 pages. (2021) Zbl1489.35183MR4304552DOI10.1007/s10915-021-01624-7
  9. Feireisl, E., Petzeltová, H., Rocca, E., Schimperna, G., 10.1142/S0218202510004544, Math. Models Methods Appl. Sci. 20 (2010), 1129-1160. (2010) Zbl1200.76155MR2673413DOI10.1142/S0218202510004544
  10. VanderZee, E., Hirani, A. N., Guoy, D., Ramos, E. A., 10.1137/090748214, SIAM J. Sci. Comput. 31 (2010), 4497-4523. (2010) Zbl1253.65030MR2594991DOI10.1137/090748214

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.