The unit groups of semisimple group algebras of some non-metabelian groups of order
Gaurav Mittal; Rajendra K. Sharma
Mathematica Bohemica (2023)
- Volume: 148, Issue: 4, page 631-646
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMittal, Gaurav, and Sharma, Rajendra K.. "The unit groups of semisimple group algebras of some non-metabelian groups of order $144$." Mathematica Bohemica 148.4 (2023): 631-646. <http://eudml.org/doc/299358>.
@article{Mittal2023,
abstract = {We consider all the non-metabelian groups $G$ of order $144$ that have exponent either $36$ or $72$ and deduce the unit group $U(\mathbb \{F\}_qG)$ of semisimple group algebra $\mathbb \{F\}_qG$. Here, $q$ denotes the power of a prime, i.e., $q=p^r$ for $p$ prime and a positive integer $r$. Up to isomorphism, there are $6$ groups of order $144$ that have exponent either $36$ or $72$. Additionally, we also discuss how to simply obtain the unit groups of the semisimple group algebras of those non-metabelian groups of order $144$ that are a direct product of two nontrivial groups. In all, this paper covers the unit groups of semisimple group algebras of $17$ non-metabelian groups.},
author = {Mittal, Gaurav, Sharma, Rajendra K.},
journal = {Mathematica Bohemica},
keywords = {unit group; finite field; Wedderburn decomposition},
language = {eng},
number = {4},
pages = {631-646},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The unit groups of semisimple group algebras of some non-metabelian groups of order $144$},
url = {http://eudml.org/doc/299358},
volume = {148},
year = {2023},
}
TY - JOUR
AU - Mittal, Gaurav
AU - Sharma, Rajendra K.
TI - The unit groups of semisimple group algebras of some non-metabelian groups of order $144$
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 4
SP - 631
EP - 646
AB - We consider all the non-metabelian groups $G$ of order $144$ that have exponent either $36$ or $72$ and deduce the unit group $U(\mathbb {F}_qG)$ of semisimple group algebra $\mathbb {F}_qG$. Here, $q$ denotes the power of a prime, i.e., $q=p^r$ for $p$ prime and a positive integer $r$. Up to isomorphism, there are $6$ groups of order $144$ that have exponent either $36$ or $72$. Additionally, we also discuss how to simply obtain the unit groups of the semisimple group algebras of those non-metabelian groups of order $144$ that are a direct product of two nontrivial groups. In all, this paper covers the unit groups of semisimple group algebras of $17$ non-metabelian groups.
LA - eng
KW - unit group; finite field; Wedderburn decomposition
UR - http://eudml.org/doc/299358
ER -
References
top- Bakshi, G. K., Gupta, S., Passi, I. B. S., 10.1080/00927872.2014.888566, Commun. Algebra 43 (2015), 2240-2257. (2015) Zbl1328.20004MR3344186DOI10.1080/00927872.2014.888566
- Bovdi, A. A., Kurdics, J., 10.1006/jabr.1998.7617, J. Algebra 212 (1999), 28-64. (1999) Zbl0936.16028MR1670626DOI10.1006/jabr.1998.7617
- Dietzel, C., Mittal, G., 10.21136/CMJ.2020.0171-20, Czech. Math. J. 71 (2021), 1011-1014. (2021) Zbl07442469MR4339106DOI10.21136/CMJ.2020.0171-20
- Ferraz, R. A., 10.1080/00927870802103503, Commun. Algebra 36 (2008), 3191-3199. (2008) Zbl1156.16019MR2441107DOI10.1080/00927870802103503
- Gupta, S., Maheshwary, S., 10.1142/S0218196718500674, Int. J. Algebra Comput. 29 (2019), 159-177. (2019) Zbl1408.16021MR3918058DOI10.1142/S0218196718500674
- Hurley, P., Hurley, T., 10.1504/IJICOT.2009.024047, Int. J. Inf. Coding Theory 1 (2009), 57-87. (2009) Zbl1213.94194MR2747648DOI10.1504/IJICOT.2009.024047
- Hurley, B., Hurley, T., Group ring cryptography, Int. J. Pure Appl. Math. 69 (2011), 67-86. (2011) Zbl1248.94071MR2841625
- James, G. D., 10.1007/BFb0067708, Lecture Notes in Mathematics 682. Springer, Berlin (1978). (1978) Zbl0393.20009MR0513828DOI10.1007/BFb0067708
- Khan, M., Sharma, R. K., Srivastava, J. B., 10.1007/s10474-007-6169-4, Acta Math. Hung. 118 (2008), 105-113. (2008) Zbl1156.16024MR2378543DOI10.1007/s10474-007-6169-4
- Lidl, R., Niederreiter, H., 10.1017/CBO9781139172769, Cambridge University Press, Cambridge (1994). (1994) Zbl0820.11072MR1294139DOI10.1017/CBO9781139172769
- Makhijani, N., Sharma, R. K., Srivastava, J. B., The unit group of , Serdica Math. J. 41 (2015), 185-198. (2015) Zbl07407351MR3363601
- Makhijani, N., Sharma, R. K., Srivastava, J. B., 10.14232/actasm-014-311-2, Acta Sci. Math. 82 (2016), 29-43. (2016) Zbl1399.16065MR3526335DOI10.14232/actasm-014-311-2
- Mittal, G., Kumar, S., Kumar, S., 10.1007/s12046-022-01806-5, Sādhanā 47 (2022), Article ID 35, 16 pages. (2022) MR4390710DOI10.1007/s12046-022-01806-5
- Mittal, G., Sharma, R. K., 10.21136/MB.2021.0116-19, Math. Bohem. 146 (2021), 429-455. (2021) Zbl07442512MR4336549DOI10.21136/MB.2021.0116-19
- Mittal, G., Sharma, R. K., 10.13069/jacodesmath.935938, J. Algebra Comb. Discrete Struct. Appl. 8 (2021), 59-71. (2021) Zbl07497651MR4263329DOI10.13069/jacodesmath.935938
- Mittal, G., Sharma, R. K., 10.4134/BKMS.b210478, Bull. Korean Math. Soc. 59 (2022), 781-787. (2022) Zbl07556746MR4432441DOI10.4134/BKMS.b210478
- Mittal, G., Sharma, R. K., 10.1142/S1793557122500590, Asian-Eur. J. Math. 15 (2022), Article ID 2250059, 11 pages. (2022) Zbl07539570MR4404211DOI10.1142/S1793557122500590
- Mittal, G., Sharma, R. K., 10.24330/ieja.1077582, Int. Electron. J. Algebra 32 (2022), 91-100. (2022) Zbl07561775MR4472725DOI10.24330/ieja.1077582
- Pazderski, G., 10.1002/mana.19800950102, Math. Nachr. 95 (1980), 7-16. (1980) Zbl0468.20018MR0592878DOI10.1002/mana.19800950102
- Perlis, S., Walker, G. L., 10.1090/S0002-9947-1950-0034758-3, Trans. Am. Math. Soc. 68 (1950), 420-426. (1950) Zbl0038.17301MR0034758DOI10.1090/S0002-9947-1950-0034758-3
- Milies, C. Polcino, Sehgal, S. K., An Introduction to Group Rings, Algebras and Applications 1. Kluwer Academic, Dordrecht (2002). (2002) Zbl0997.20003MR1896125
- Sharma, R. K., Mittal, G., 10.21136/MB.2021.0104-20, Math. Bohem. 147 (2022), 1-10. (2022) Zbl07547237MR4387464DOI10.21136/MB.2021.0104-20
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.