The unit groups of semisimple group algebras of some non-metabelian groups of order 144

Gaurav Mittal; Rajendra K. Sharma

Mathematica Bohemica (2023)

  • Volume: 148, Issue: 4, page 631-646
  • ISSN: 0862-7959

Abstract

top
We consider all the non-metabelian groups G of order 144 that have exponent either 36 or 72 and deduce the unit group U ( 𝔽 q G ) of semisimple group algebra 𝔽 q G . Here, q denotes the power of a prime, i.e., q = p r for p prime and a positive integer r . Up to isomorphism, there are 6 groups of order 144 that have exponent either 36 or 72 . Additionally, we also discuss how to simply obtain the unit groups of the semisimple group algebras of those non-metabelian groups of order 144 that are a direct product of two nontrivial groups. In all, this paper covers the unit groups of semisimple group algebras of 17 non-metabelian groups.

How to cite

top

Mittal, Gaurav, and Sharma, Rajendra K.. "The unit groups of semisimple group algebras of some non-metabelian groups of order $144$." Mathematica Bohemica 148.4 (2023): 631-646. <http://eudml.org/doc/299358>.

@article{Mittal2023,
abstract = {We consider all the non-metabelian groups $G$ of order $144$ that have exponent either $36$ or $72$ and deduce the unit group $U(\mathbb \{F\}_qG)$ of semisimple group algebra $\mathbb \{F\}_qG$. Here, $q$ denotes the power of a prime, i.e., $q=p^r$ for $p$ prime and a positive integer $r$. Up to isomorphism, there are $6$ groups of order $144$ that have exponent either $36$ or $72$. Additionally, we also discuss how to simply obtain the unit groups of the semisimple group algebras of those non-metabelian groups of order $144$ that are a direct product of two nontrivial groups. In all, this paper covers the unit groups of semisimple group algebras of $17$ non-metabelian groups.},
author = {Mittal, Gaurav, Sharma, Rajendra K.},
journal = {Mathematica Bohemica},
keywords = {unit group; finite field; Wedderburn decomposition},
language = {eng},
number = {4},
pages = {631-646},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The unit groups of semisimple group algebras of some non-metabelian groups of order $144$},
url = {http://eudml.org/doc/299358},
volume = {148},
year = {2023},
}

TY - JOUR
AU - Mittal, Gaurav
AU - Sharma, Rajendra K.
TI - The unit groups of semisimple group algebras of some non-metabelian groups of order $144$
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 4
SP - 631
EP - 646
AB - We consider all the non-metabelian groups $G$ of order $144$ that have exponent either $36$ or $72$ and deduce the unit group $U(\mathbb {F}_qG)$ of semisimple group algebra $\mathbb {F}_qG$. Here, $q$ denotes the power of a prime, i.e., $q=p^r$ for $p$ prime and a positive integer $r$. Up to isomorphism, there are $6$ groups of order $144$ that have exponent either $36$ or $72$. Additionally, we also discuss how to simply obtain the unit groups of the semisimple group algebras of those non-metabelian groups of order $144$ that are a direct product of two nontrivial groups. In all, this paper covers the unit groups of semisimple group algebras of $17$ non-metabelian groups.
LA - eng
KW - unit group; finite field; Wedderburn decomposition
UR - http://eudml.org/doc/299358
ER -

References

top
  1. Bakshi, G. K., Gupta, S., Passi, I. B. S., 10.1080/00927872.2014.888566, Commun. Algebra 43 (2015), 2240-2257. (2015) Zbl1328.20004MR3344186DOI10.1080/00927872.2014.888566
  2. Bovdi, A. A., Kurdics, J., 10.1006/jabr.1998.7617, J. Algebra 212 (1999), 28-64. (1999) Zbl0936.16028MR1670626DOI10.1006/jabr.1998.7617
  3. Dietzel, C., Mittal, G., 10.21136/CMJ.2020.0171-20, Czech. Math. J. 71 (2021), 1011-1014. (2021) Zbl07442469MR4339106DOI10.21136/CMJ.2020.0171-20
  4. Ferraz, R. A., 10.1080/00927870802103503, Commun. Algebra 36 (2008), 3191-3199. (2008) Zbl1156.16019MR2441107DOI10.1080/00927870802103503
  5. Gupta, S., Maheshwary, S., 10.1142/S0218196718500674, Int. J. Algebra Comput. 29 (2019), 159-177. (2019) Zbl1408.16021MR3918058DOI10.1142/S0218196718500674
  6. Hurley, P., Hurley, T., 10.1504/IJICOT.2009.024047, Int. J. Inf. Coding Theory 1 (2009), 57-87. (2009) Zbl1213.94194MR2747648DOI10.1504/IJICOT.2009.024047
  7. Hurley, B., Hurley, T., Group ring cryptography, Int. J. Pure Appl. Math. 69 (2011), 67-86. (2011) Zbl1248.94071MR2841625
  8. James, G. D., 10.1007/BFb0067708, Lecture Notes in Mathematics 682. Springer, Berlin (1978). (1978) Zbl0393.20009MR0513828DOI10.1007/BFb0067708
  9. Khan, M., Sharma, R. K., Srivastava, J. B., 10.1007/s10474-007-6169-4, Acta Math. Hung. 118 (2008), 105-113. (2008) Zbl1156.16024MR2378543DOI10.1007/s10474-007-6169-4
  10. Lidl, R., Niederreiter, H., 10.1017/CBO9781139172769, Cambridge University Press, Cambridge (1994). (1994) Zbl0820.11072MR1294139DOI10.1017/CBO9781139172769
  11. Makhijani, N., Sharma, R. K., Srivastava, J. B., The unit group of 𝔽 q [ D 30 ] , Serdica Math. J. 41 (2015), 185-198. (2015) Zbl07407351MR3363601
  12. Makhijani, N., Sharma, R. K., Srivastava, J. B., 10.14232/actasm-014-311-2, Acta Sci. Math. 82 (2016), 29-43. (2016) Zbl1399.16065MR3526335DOI10.14232/actasm-014-311-2
  13. Mittal, G., Kumar, S., Kumar, S., 10.1007/s12046-022-01806-5, Sādhanā 47 (2022), Article ID 35, 16 pages. (2022) MR4390710DOI10.1007/s12046-022-01806-5
  14. Mittal, G., Sharma, R. K., 10.21136/MB.2021.0116-19, Math. Bohem. 146 (2021), 429-455. (2021) Zbl07442512MR4336549DOI10.21136/MB.2021.0116-19
  15. Mittal, G., Sharma, R. K., 10.13069/jacodesmath.935938, J. Algebra Comb. Discrete Struct. Appl. 8 (2021), 59-71. (2021) Zbl07497651MR4263329DOI10.13069/jacodesmath.935938
  16. Mittal, G., Sharma, R. K., 10.4134/BKMS.b210478, Bull. Korean Math. Soc. 59 (2022), 781-787. (2022) Zbl07556746MR4432441DOI10.4134/BKMS.b210478
  17. Mittal, G., Sharma, R. K., 10.1142/S1793557122500590, Asian-Eur. J. Math. 15 (2022), Article ID 2250059, 11 pages. (2022) Zbl07539570MR4404211DOI10.1142/S1793557122500590
  18. Mittal, G., Sharma, R. K., 10.24330/ieja.1077582, Int. Electron. J. Algebra 32 (2022), 91-100. (2022) Zbl07561775MR4472725DOI10.24330/ieja.1077582
  19. Pazderski, G., 10.1002/mana.19800950102, Math. Nachr. 95 (1980), 7-16. (1980) Zbl0468.20018MR0592878DOI10.1002/mana.19800950102
  20. Perlis, S., Walker, G. L., 10.1090/S0002-9947-1950-0034758-3, Trans. Am. Math. Soc. 68 (1950), 420-426. (1950) Zbl0038.17301MR0034758DOI10.1090/S0002-9947-1950-0034758-3
  21. Milies, C. Polcino, Sehgal, S. K., An Introduction to Group Rings, Algebras and Applications 1. Kluwer Academic, Dordrecht (2002). (2002) Zbl0997.20003MR1896125
  22. Sharma, R. K., Mittal, G., 10.21136/MB.2021.0104-20, Math. Bohem. 147 (2022), 1-10. (2022) Zbl07547237MR4387464DOI10.21136/MB.2021.0104-20

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.