Commutative rings whose certain modules decompose into direct sums of cyclic submodules
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 4, page 1099-1117
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKourki, Farid, and Tribak, Rachid. "Commutative rings whose certain modules decompose into direct sums of cyclic submodules." Czechoslovak Mathematical Journal 73.4 (2023): 1099-1117. <http://eudml.org/doc/299367>.
@article{Kourki2023,
abstract = {We provide some characterizations of rings $R$ for which every (finitely generated) module belonging to a class $\mathcal \{C\}$ of $R$-modules is a direct sum of cyclic submodules. We focus on the cases, where the class $\mathcal \{C\}$ is one of the following classes of modules: semiartinian modules, semi-V-modules, V-modules, coperfect modules and locally supplemented modules.},
author = {Kourki, Farid, Tribak, Rachid},
journal = {Czechoslovak Mathematical Journal},
keywords = {decomposition of a module; FGC-ring; Köthe ring; semiartinian module; (semi-)V-module; locally supplemented module},
language = {eng},
number = {4},
pages = {1099-1117},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Commutative rings whose certain modules decompose into direct sums of cyclic submodules},
url = {http://eudml.org/doc/299367},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Kourki, Farid
AU - Tribak, Rachid
TI - Commutative rings whose certain modules decompose into direct sums of cyclic submodules
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 4
SP - 1099
EP - 1117
AB - We provide some characterizations of rings $R$ for which every (finitely generated) module belonging to a class $\mathcal {C}$ of $R$-modules is a direct sum of cyclic submodules. We focus on the cases, where the class $\mathcal {C}$ is one of the following classes of modules: semiartinian modules, semi-V-modules, V-modules, coperfect modules and locally supplemented modules.
LA - eng
KW - decomposition of a module; FGC-ring; Köthe ring; semiartinian module; (semi-)V-module; locally supplemented module
UR - http://eudml.org/doc/299367
ER -
References
top- Albu, T., Wisbauer, R., 10.1007/978-1-4612-1978-1_1, Advances in Ring Theory Trends in Mathematics. Birkhäuser, Boston (1997), 1-16. (1997) Zbl0885.16004MR1602688DOI10.1007/978-1-4612-1978-1_1
- Anderson, F. W., Fuller, K. R., 10.1007/978-1-4612-4418-9, Graduate Texts in Mathematics 13. Springer, New York (1974). (1974) Zbl0301.16001MR0417223DOI10.1007/978-1-4612-4418-9
- Baccella, G., 10.1006/jabr.1995.1104, J. Algebra 173 (1995), 587-612. (1995) Zbl0829.16007MR1327870DOI10.1006/jabr.1995.1104
- Brandal, W., 10.1007/BFb0069021, Lecture Notes in Mathematics 723. Springer, New York (1979). (1979) Zbl0426.13004MR0539854DOI10.1007/BFb0069021
- Camillo, V., Yousif, M. F., 10.1080/00927878908823720, Commun. Algebra 17 (1989), 165-177. (1989) Zbl0658.16020MR0970870DOI10.1080/00927878908823720
- Cheatham, T. J., Smith, J. R., 10.2140/pjm.1976.65.315, Pac. J. Math. 65 (1976), 315-323. (1976) Zbl0326.16011MR0422348DOI10.2140/pjm.1976.65.315
- Clark, J., Lomp, C., Vanaja, N., Wisbauer, R., 10.1007/3-7643-7573-6, Frontiers in Mathematics. Birkhäuser, Basel (2006). (2006) Zbl1102.16001MR2253001DOI10.1007/3-7643-7573-6
- Cohen, I. S., 10.1215/S0012-7094-50-01704-2, Duke Math. J. 17 (1950), 27-42. (1950) Zbl0041.36408MR0033276DOI10.1215/S0012-7094-50-01704-2
- Cohen, I. S., Kaplansky, I., 10.1007/BF01179851, Math. Z. 54 (1951), 97-101. (1951) Zbl0043.26702MR0043073DOI10.1007/BF01179851
- Couchot, F., 10.1080/00927870601041615, Commun. Algebra 35 (2007), 231-241. (2007) Zbl1107.13012MR2287564DOI10.1080/00927870601041615
- Dickson, S. E., 10.1007/BF01110426, Math. Z. 104 (1968), 349-357. (1968) Zbl0164.34703MR0229678DOI10.1007/BF01110426
- Facchini, A., Rings whose finitely generated torsion modules in the sense of Dickson decompose into direct sums of cyclic submodules, Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 68 (1980), 13-21. (1980) Zbl0469.13005MR0625910
- Facchini, A., 10.1007/BF01789482, Ann. Mat. Pura Appl., IV. Ser. 128 (1981), 359-374. (1981) Zbl0488.13014MR0640791DOI10.1007/BF01789482
- Faith, C., 10.1080/00927879508825506, Commun. Algebra 23 (1995), 4885-4886. (1995) Zbl0840.13006MR1356108DOI10.1080/00927879508825506
- Fuller, K. R., 10.1112/jlms/s2-5.3.423, J. Lond. Math. Soc., II. Ser. 5 (1972), 423-431. (1972) Zbl0253.16018MR0325686DOI10.1112/jlms/s2-5.3.423
- Gill, D. T., 10.1112/jlms/s2-4.1.140, J. Lond. Math. Soc., II. Ser. 4 (1971), 140-146. (1971) Zbl0219.13016MR0292822DOI10.1112/jlms/s2-4.1.140
- Gilmer, R., 10.1007/BF01350233, Math. Ann. 183 (1969), 151-158. (1969) Zbl0169.05402MR0248123DOI10.1007/BF01350233
- Gordon, R., Robson, J. C., 10.1090/memo/0133, Memoirs of the American Mathematical Society 133. AMS, Providence (1973). (1973) Zbl0269.16017MR0352177DOI10.1090/memo/0133
- Hirano, Y., 10.32917/hmj/1206134222, Hiroshima Math. J. 11 (1981), 125-142. (1981) Zbl0459.16009MR0606838DOI10.32917/hmj/1206134222
- Kaplansky, I., 10.1090/S0002-9947-1952-0046349-0, Trans. Am. Math. Soc. 72 (1952), 327-340. (1952) Zbl0046.25701MR0046349DOI10.1090/S0002-9947-1952-0046349-0
- Köthe, G., 10.1007/BF01201343, Math. Z. 39 (1935), 31-44 German. (1935) Zbl0010.01102MR1545487DOI10.1007/BF01201343
- Kourki, F., Tribak, R., On semiartinian and -semiartinian modules, Palest. J. Math. 7 (2018), 99-107. (2018) Zbl1411.13008MR3847599
- Kourki, F., Tribak, R., 10.24330/ieja.663060, Int. Electron. J. Algebra 27 (2020), 178-193. (2020) Zbl1430.13013MR4056427DOI10.24330/ieja.663060
- Kourki, F., Tribak, R., 10.1142/S1005386720000449, Algebra Colloq. 27 (2020), 531-544. (2020) Zbl1456.13016MR4141630DOI10.1142/S1005386720000449
- Kourki, F., Tribak, R., 10.36045/j.bbms.200928, Bull. Belg. Math. Soc. - Simon Stevin 28 (2021), 275-294. (2021) Zbl1481.13022MR4355688DOI10.36045/j.bbms.200928
- Lafon, J.-P., 10.1016/0021-8693(71)90010-X, J. Algebra 17 (1971), 575-591 French. (1971) Zbl0215.37001MR0282968DOI10.1016/0021-8693(71)90010-X
- Lam, T. Y., 10.1007/978-1-4612-0525-8, Graduate Texts in Mathematics 189. Springer, New York (1999). (1999) Zbl0911.16001MR1653294DOI10.1007/978-1-4612-0525-8
- Lam, T. Y., 10.1007/978-1-4419-8616-0, Graduate Texts in Mathematics 131. Springer, New York (2001). (2001) Zbl0980.16001MR1838439DOI10.1007/978-1-4419-8616-0
- Matlis, E., 10.1090/S0002-9947-1966-0201465-5, Trans. Am. Math. Soc. 125 (1966), 147-179. (1966) Zbl0144.03001MR0201465DOI10.1090/S0002-9947-1966-0201465-5
- Penk, T., Žemlička, J., 10.1142/S0219498813501296, J. Algebra Appl. 13 (2014), Article ID 1350129, 11 pages. (2014) Zbl1309.13026MR3153864DOI10.1142/S0219498813501296
- Pierce, R. S., 10.1090/memo/0070, Memoirs of the American Mathematical Society 70. AMS, Providence (1967). (1967) Zbl0152.02601MR0217056DOI10.1090/memo/0070
- Sarath, B., 10.1215/ijm/1256049903, Ill. J. Math. 20 (1976), 329-335. (1976) Zbl0323.16008MR0399158DOI10.1215/ijm/1256049903
- Sharpe, D. W., Vámos, P., Injective Modules, Cambridge Tracts in Mathematics and mathematical Physics 62. Cambridge University Press, Cambridge (1972). (1972) Zbl0245.13001MR0360706
- Shores, T. S., 10.1090/S0002-9939-1971-0281708-X, Proc. Am. Math. Soc. 30 (1971), 445-450. (1971) Zbl0203.05002MR0281708DOI10.1090/S0002-9939-1971-0281708-X
- Uzkov, A. I., On the decomposition of modules over a commutative ring into direct sums of cyclic submodules, Mat. Sb., N. Ser. 62 (104) (1963), 469-475 Russian. (1963) Zbl0122.29003MR0157986
- Vámos, P., 10.1112/jlms/s1-43.1.643, J. Lond. Math. Soc. 43 (1968), 643-646. (1968) Zbl0164.04003MR0248171DOI10.1112/jlms/s1-43.1.643
- R. B. Warfield, Jr., 10.1090/S0002-9939-1970-0254030-4, Proc. Am. Math. Soc. 25 (1970), 167-172. (1970) Zbl0204.05902MR0254030DOI10.1090/S0002-9939-1970-0254030-4
- Wisbauer, R., 10.1201/9780203755532, Algebra, Logic and Applications 3. Gordon and Breach Science Publishers, Philadelphia (1991). (1991) Zbl0746.16001MR1144522DOI10.1201/9780203755532
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.