Commutative rings whose certain modules decompose into direct sums of cyclic submodules

Farid Kourki; Rachid Tribak

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 4, page 1099-1117
  • ISSN: 0011-4642

Abstract

top
We provide some characterizations of rings R for which every (finitely generated) module belonging to a class 𝒞 of R -modules is a direct sum of cyclic submodules. We focus on the cases, where the class 𝒞 is one of the following classes of modules: semiartinian modules, semi-V-modules, V-modules, coperfect modules and locally supplemented modules.

How to cite

top

Kourki, Farid, and Tribak, Rachid. "Commutative rings whose certain modules decompose into direct sums of cyclic submodules." Czechoslovak Mathematical Journal 73.4 (2023): 1099-1117. <http://eudml.org/doc/299367>.

@article{Kourki2023,
abstract = {We provide some characterizations of rings $R$ for which every (finitely generated) module belonging to a class $\mathcal \{C\}$ of $R$-modules is a direct sum of cyclic submodules. We focus on the cases, where the class $\mathcal \{C\}$ is one of the following classes of modules: semiartinian modules, semi-V-modules, V-modules, coperfect modules and locally supplemented modules.},
author = {Kourki, Farid, Tribak, Rachid},
journal = {Czechoslovak Mathematical Journal},
keywords = {decomposition of a module; FGC-ring; Köthe ring; semiartinian module; (semi-)V-module; locally supplemented module},
language = {eng},
number = {4},
pages = {1099-1117},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Commutative rings whose certain modules decompose into direct sums of cyclic submodules},
url = {http://eudml.org/doc/299367},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Kourki, Farid
AU - Tribak, Rachid
TI - Commutative rings whose certain modules decompose into direct sums of cyclic submodules
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 4
SP - 1099
EP - 1117
AB - We provide some characterizations of rings $R$ for which every (finitely generated) module belonging to a class $\mathcal {C}$ of $R$-modules is a direct sum of cyclic submodules. We focus on the cases, where the class $\mathcal {C}$ is one of the following classes of modules: semiartinian modules, semi-V-modules, V-modules, coperfect modules and locally supplemented modules.
LA - eng
KW - decomposition of a module; FGC-ring; Köthe ring; semiartinian module; (semi-)V-module; locally supplemented module
UR - http://eudml.org/doc/299367
ER -

References

top
  1. Albu, T., Wisbauer, R., 10.1007/978-1-4612-1978-1_1, Advances in Ring Theory Trends in Mathematics. Birkhäuser, Boston (1997), 1-16. (1997) Zbl0885.16004MR1602688DOI10.1007/978-1-4612-1978-1_1
  2. Anderson, F. W., Fuller, K. R., 10.1007/978-1-4612-4418-9, Graduate Texts in Mathematics 13. Springer, New York (1974). (1974) Zbl0301.16001MR0417223DOI10.1007/978-1-4612-4418-9
  3. Baccella, G., 10.1006/jabr.1995.1104, J. Algebra 173 (1995), 587-612. (1995) Zbl0829.16007MR1327870DOI10.1006/jabr.1995.1104
  4. Brandal, W., 10.1007/BFb0069021, Lecture Notes in Mathematics 723. Springer, New York (1979). (1979) Zbl0426.13004MR0539854DOI10.1007/BFb0069021
  5. Camillo, V., Yousif, M. F., 10.1080/00927878908823720, Commun. Algebra 17 (1989), 165-177. (1989) Zbl0658.16020MR0970870DOI10.1080/00927878908823720
  6. Cheatham, T. J., Smith, J. R., 10.2140/pjm.1976.65.315, Pac. J. Math. 65 (1976), 315-323. (1976) Zbl0326.16011MR0422348DOI10.2140/pjm.1976.65.315
  7. Clark, J., Lomp, C., Vanaja, N., Wisbauer, R., 10.1007/3-7643-7573-6, Frontiers in Mathematics. Birkhäuser, Basel (2006). (2006) Zbl1102.16001MR2253001DOI10.1007/3-7643-7573-6
  8. Cohen, I. S., 10.1215/S0012-7094-50-01704-2, Duke Math. J. 17 (1950), 27-42. (1950) Zbl0041.36408MR0033276DOI10.1215/S0012-7094-50-01704-2
  9. Cohen, I. S., Kaplansky, I., 10.1007/BF01179851, Math. Z. 54 (1951), 97-101. (1951) Zbl0043.26702MR0043073DOI10.1007/BF01179851
  10. Couchot, F., 10.1080/00927870601041615, Commun. Algebra 35 (2007), 231-241. (2007) Zbl1107.13012MR2287564DOI10.1080/00927870601041615
  11. Dickson, S. E., 10.1007/BF01110426, Math. Z. 104 (1968), 349-357. (1968) Zbl0164.34703MR0229678DOI10.1007/BF01110426
  12. Facchini, A., Rings whose finitely generated torsion modules in the sense of Dickson decompose into direct sums of cyclic submodules, Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 68 (1980), 13-21. (1980) Zbl0469.13005MR0625910
  13. Facchini, A., 10.1007/BF01789482, Ann. Mat. Pura Appl., IV. Ser. 128 (1981), 359-374. (1981) Zbl0488.13014MR0640791DOI10.1007/BF01789482
  14. Faith, C., 10.1080/00927879508825506, Commun. Algebra 23 (1995), 4885-4886. (1995) Zbl0840.13006MR1356108DOI10.1080/00927879508825506
  15. Fuller, K. R., 10.1112/jlms/s2-5.3.423, J. Lond. Math. Soc., II. Ser. 5 (1972), 423-431. (1972) Zbl0253.16018MR0325686DOI10.1112/jlms/s2-5.3.423
  16. Gill, D. T., 10.1112/jlms/s2-4.1.140, J. Lond. Math. Soc., II. Ser. 4 (1971), 140-146. (1971) Zbl0219.13016MR0292822DOI10.1112/jlms/s2-4.1.140
  17. Gilmer, R., 10.1007/BF01350233, Math. Ann. 183 (1969), 151-158. (1969) Zbl0169.05402MR0248123DOI10.1007/BF01350233
  18. Gordon, R., Robson, J. C., 10.1090/memo/0133, Memoirs of the American Mathematical Society 133. AMS, Providence (1973). (1973) Zbl0269.16017MR0352177DOI10.1090/memo/0133
  19. Hirano, Y., 10.32917/hmj/1206134222, Hiroshima Math. J. 11 (1981), 125-142. (1981) Zbl0459.16009MR0606838DOI10.32917/hmj/1206134222
  20. Kaplansky, I., 10.1090/S0002-9947-1952-0046349-0, Trans. Am. Math. Soc. 72 (1952), 327-340. (1952) Zbl0046.25701MR0046349DOI10.1090/S0002-9947-1952-0046349-0
  21. Köthe, G., 10.1007/BF01201343, Math. Z. 39 (1935), 31-44 German. (1935) Zbl0010.01102MR1545487DOI10.1007/BF01201343
  22. Kourki, F., Tribak, R., On semiartinian and Π -semiartinian modules, Palest. J. Math. 7 (2018), 99-107. (2018) Zbl1411.13008MR3847599
  23. Kourki, F., Tribak, R., 10.24330/ieja.663060, Int. Electron. J. Algebra 27 (2020), 178-193. (2020) Zbl1430.13013MR4056427DOI10.24330/ieja.663060
  24. Kourki, F., Tribak, R., 10.1142/S1005386720000449, Algebra Colloq. 27 (2020), 531-544. (2020) Zbl1456.13016MR4141630DOI10.1142/S1005386720000449
  25. Kourki, F., Tribak, R., 10.36045/j.bbms.200928, Bull. Belg. Math. Soc. - Simon Stevin 28 (2021), 275-294. (2021) Zbl1481.13022MR4355688DOI10.36045/j.bbms.200928
  26. Lafon, J.-P., 10.1016/0021-8693(71)90010-X, J. Algebra 17 (1971), 575-591 French. (1971) Zbl0215.37001MR0282968DOI10.1016/0021-8693(71)90010-X
  27. Lam, T. Y., 10.1007/978-1-4612-0525-8, Graduate Texts in Mathematics 189. Springer, New York (1999). (1999) Zbl0911.16001MR1653294DOI10.1007/978-1-4612-0525-8
  28. Lam, T. Y., 10.1007/978-1-4419-8616-0, Graduate Texts in Mathematics 131. Springer, New York (2001). (2001) Zbl0980.16001MR1838439DOI10.1007/978-1-4419-8616-0
  29. Matlis, E., 10.1090/S0002-9947-1966-0201465-5, Trans. Am. Math. Soc. 125 (1966), 147-179. (1966) Zbl0144.03001MR0201465DOI10.1090/S0002-9947-1966-0201465-5
  30. Penk, T., Žemlička, J., 10.1142/S0219498813501296, J. Algebra Appl. 13 (2014), Article ID 1350129, 11 pages. (2014) Zbl1309.13026MR3153864DOI10.1142/S0219498813501296
  31. Pierce, R. S., 10.1090/memo/0070, Memoirs of the American Mathematical Society 70. AMS, Providence (1967). (1967) Zbl0152.02601MR0217056DOI10.1090/memo/0070
  32. Sarath, B., 10.1215/ijm/1256049903, Ill. J. Math. 20 (1976), 329-335. (1976) Zbl0323.16008MR0399158DOI10.1215/ijm/1256049903
  33. Sharpe, D. W., Vámos, P., Injective Modules, Cambridge Tracts in Mathematics and mathematical Physics 62. Cambridge University Press, Cambridge (1972). (1972) Zbl0245.13001MR0360706
  34. Shores, T. S., 10.1090/S0002-9939-1971-0281708-X, Proc. Am. Math. Soc. 30 (1971), 445-450. (1971) Zbl0203.05002MR0281708DOI10.1090/S0002-9939-1971-0281708-X
  35. Uzkov, A. I., On the decomposition of modules over a commutative ring into direct sums of cyclic submodules, Mat. Sb., N. Ser. 62 (104) (1963), 469-475 Russian. (1963) Zbl0122.29003MR0157986
  36. Vámos, P., 10.1112/jlms/s1-43.1.643, J. Lond. Math. Soc. 43 (1968), 643-646. (1968) Zbl0164.04003MR0248171DOI10.1112/jlms/s1-43.1.643
  37. R. B. Warfield, Jr., 10.1090/S0002-9939-1970-0254030-4, Proc. Am. Math. Soc. 25 (1970), 167-172. (1970) Zbl0204.05902MR0254030DOI10.1090/S0002-9939-1970-0254030-4
  38. Wisbauer, R., 10.1201/9780203755532, Algebra, Logic and Applications 3. Gordon and Breach Science Publishers, Philadelphia (1991). (1991) Zbl0746.16001MR1144522DOI10.1201/9780203755532

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.