Upper and lower convergence rates for strong solutions of the 3D non-Newtonian flows associated with Maxwell equations under large initial perturbation
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 2, page 395-413
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKim, Jae-Myoung. "Upper and lower convergence rates for strong solutions of the 3D non-Newtonian flows associated with Maxwell equations under large initial perturbation." Czechoslovak Mathematical Journal 73.2 (2023): 395-413. <http://eudml.org/doc/299374>.
@article{Kim2023,
abstract = {We show the upper and lower bounds of convergence rates for strong solutions of the 3D non-Newtonian flows associated with Maxwell equations under a large initial perturbation.},
author = {Kim, Jae-Myoung},
journal = {Czechoslovak Mathematical Journal},
keywords = {non-Newtonian fluid; MHD equation; decay estimate; large initial perturbation},
language = {eng},
number = {2},
pages = {395-413},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Upper and lower convergence rates for strong solutions of the 3D non-Newtonian flows associated with Maxwell equations under large initial perturbation},
url = {http://eudml.org/doc/299374},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Kim, Jae-Myoung
TI - Upper and lower convergence rates for strong solutions of the 3D non-Newtonian flows associated with Maxwell equations under large initial perturbation
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 2
SP - 395
EP - 413
AB - We show the upper and lower bounds of convergence rates for strong solutions of the 3D non-Newtonian flows associated with Maxwell equations under a large initial perturbation.
LA - eng
KW - non-Newtonian fluid; MHD equation; decay estimate; large initial perturbation
UR - http://eudml.org/doc/299374
ER -
References
top- Astarita, G., Marrucci, G., Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, London (1974). (1974)
- Bae, H.-O., Jin, B. J., 10.1016/j.jde.2004.09.011, J. Differ. Equations 209 (2005), 365-391. (2005) Zbl1062.35058MR2110209DOI10.1016/j.jde.2004.09.011
- Benvenutti, M. J., Ferreira, L. C. F., Existence and stability of global large strong solutions for the Hall-MHD system, Differ. Integral Equ. 29 (2016), 977-1000. (2016) Zbl1389.35255MR3513590
- Gunzburger, M. D., Ladyzhenskaya, O. A., Peterson, J. S., 10.1007/s00021-004-0107-9, J. Math. Fluid Mech. 6 (2004), 462-482. (2004) Zbl1064.76118MR2101892DOI10.1007/s00021-004-0107-9
- Guo, B., Zhu, P., 10.1063/1.533135, J. Math. Phys. 41 (2000), 349-356. (2000) Zbl0989.35108MR1738602DOI10.1063/1.533135
- Kang, K., Kim, J.-M., 10.1007/s00030-019-0557-7, NoDEA, Nonlinear Differ. Equ. Appl. 26 (2019), Article ID 11, 24 pages. (2019) Zbl1417.76045MR3924622DOI10.1007/s00030-019-0557-7
- Karch, G., Pilarczyk, D., 10.1007/s00205-011-0409-z, Arch. Ration. Mech. Anal. 202 (2011), 115-131. (2011) Zbl1256.35061MR2835864DOI10.1007/s00205-011-0409-z
- Karch, G., Pilarczyk, D., Schonbek, M. E., 10.1016/j.matpur.2016.10.008, J. Math. Pures Appl. (9) 108 (2017), 14-40. (2017) Zbl1368.35207MR3660767DOI10.1016/j.matpur.2016.10.008
- Kim, J.-M., 10.1063/1.5128708, J. Math. Phys. 61 (2020), Article ID 011504, 6 pages. (2020) Zbl1432.76289MR4047930DOI10.1063/1.5128708
- Kim, J.-M., 10.3934/math.2021777, AIMS Math. 6 (2021), 13423-13431. (2021) Zbl07533493MR4332321DOI10.3934/math.2021777
- Kozono, H., 10.1006/jfan.2000.3625, J. Funct. Anal. 176 (2000), 153-197. (2000) Zbl0970.35106MR1784412DOI10.1006/jfan.2000.3625
- Miyakawa, T., 10.32917/hmj/1151007491, Hiroshima Math. J. 32 (2002), 431-462. (2002) Zbl1048.35063MR1954053DOI10.32917/hmj/1151007491
- Nečasová, Š., Penel, P., 10.1016/S0362-546X(01)00535-1, Nonlinear Anal., Theory Methods Appl., Ser. A 47 (2001), 4181-4191. (2001) Zbl1042.76504MR1972358DOI10.1016/S0362-546X(01)00535-1
- Oliver, M., Titi, E. S., 10.1006/jfan.1999.3550, J. Funct. Anal. 172 (2000), 1-18. (2000) Zbl0960.35081MR1749867DOI10.1006/jfan.1999.3550
- Samokhin, V. N., A magnetohydrodynamic-equation system for a nonlinearly viscous liquid, Differ. Equations 27 (1991), 628-636 translation from Differ. Uravn. 27 1991 886-896. (1991) Zbl0795.76094MR1117118
- Schonbek, M. E., 10.1080/03605308608820443, Commun. Partial Differ. Equations 11 (1986), 733-763. (1986) Zbl0607.35071MR0837929DOI10.1080/03605308608820443
- Secchi, P., 10.1512/iumj.1987.36.36039, Indiana Univ. Math. J. 36 (1987), 685-691. (1987) Zbl0635.35076MR0905619DOI10.1512/iumj.1987.36.36039
- Wiegner, M., 10.1112/jlms/s2-35.2.303, J. Lond. Math. Soc., II. Ser. 35 (1987), 303-313. (1987) Zbl0652.35095MR0881519DOI10.1112/jlms/s2-35.2.303
- Wilkinson, W. L., Non-Newtonian Fluids: Fluid Mechanics, Mixing and Heat Transfer, International Series of Monographs on Chemical Engineering 1. Pergamon Press, New York (1960). (1960) Zbl0124.41802MR0110392
- Xie, Q., Guo, Y., Dong, B.-Q., 10.1016/j.jmaa.2020.124641, J. Math. Anal. Appl. 494 (2021), Article ID 124641, 21 pages. (2021) Zbl1457.76027MR4161399DOI10.1016/j.jmaa.2020.124641
- Zhou, Y., 10.1081/PDE-200037770, Commun. Partial Differ. Equations 30 (2005), 323-333. (2005) Zbl1142.35548MR2131057DOI10.1081/PDE-200037770
- Zhou, Y., 10.1007/s00033-008-7045-y, Z. Angew. Math. Phys. 60 (2009), 191-204. (2009) Zbl1293.76049MR2486152DOI10.1007/s00033-008-7045-y
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.