Upper and lower convergence rates for strong solutions of the 3D non-Newtonian flows associated with Maxwell equations under large initial perturbation

Jae-Myoung Kim

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 2, page 395-413
  • ISSN: 0011-4642

Abstract

top
We show the upper and lower bounds of convergence rates for strong solutions of the 3D non-Newtonian flows associated with Maxwell equations under a large initial perturbation.

How to cite

top

Kim, Jae-Myoung. "Upper and lower convergence rates for strong solutions of the 3D non-Newtonian flows associated with Maxwell equations under large initial perturbation." Czechoslovak Mathematical Journal 73.2 (2023): 395-413. <http://eudml.org/doc/299374>.

@article{Kim2023,
abstract = {We show the upper and lower bounds of convergence rates for strong solutions of the 3D non-Newtonian flows associated with Maxwell equations under a large initial perturbation.},
author = {Kim, Jae-Myoung},
journal = {Czechoslovak Mathematical Journal},
keywords = {non-Newtonian fluid; MHD equation; decay estimate; large initial perturbation},
language = {eng},
number = {2},
pages = {395-413},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Upper and lower convergence rates for strong solutions of the 3D non-Newtonian flows associated with Maxwell equations under large initial perturbation},
url = {http://eudml.org/doc/299374},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Kim, Jae-Myoung
TI - Upper and lower convergence rates for strong solutions of the 3D non-Newtonian flows associated with Maxwell equations under large initial perturbation
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 2
SP - 395
EP - 413
AB - We show the upper and lower bounds of convergence rates for strong solutions of the 3D non-Newtonian flows associated with Maxwell equations under a large initial perturbation.
LA - eng
KW - non-Newtonian fluid; MHD equation; decay estimate; large initial perturbation
UR - http://eudml.org/doc/299374
ER -

References

top
  1. Astarita, G., Marrucci, G., Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, London (1974). (1974) 
  2. Bae, H.-O., Jin, B. J., 10.1016/j.jde.2004.09.011, J. Differ. Equations 209 (2005), 365-391. (2005) Zbl1062.35058MR2110209DOI10.1016/j.jde.2004.09.011
  3. Benvenutti, M. J., Ferreira, L. C. F., Existence and stability of global large strong solutions for the Hall-MHD system, Differ. Integral Equ. 29 (2016), 977-1000. (2016) Zbl1389.35255MR3513590
  4. Gunzburger, M. D., Ladyzhenskaya, O. A., Peterson, J. S., 10.1007/s00021-004-0107-9, J. Math. Fluid Mech. 6 (2004), 462-482. (2004) Zbl1064.76118MR2101892DOI10.1007/s00021-004-0107-9
  5. Guo, B., Zhu, P., 10.1063/1.533135, J. Math. Phys. 41 (2000), 349-356. (2000) Zbl0989.35108MR1738602DOI10.1063/1.533135
  6. Kang, K., Kim, J.-M., 10.1007/s00030-019-0557-7, NoDEA, Nonlinear Differ. Equ. Appl. 26 (2019), Article ID 11, 24 pages. (2019) Zbl1417.76045MR3924622DOI10.1007/s00030-019-0557-7
  7. Karch, G., Pilarczyk, D., 10.1007/s00205-011-0409-z, Arch. Ration. Mech. Anal. 202 (2011), 115-131. (2011) Zbl1256.35061MR2835864DOI10.1007/s00205-011-0409-z
  8. Karch, G., Pilarczyk, D., Schonbek, M. E., 10.1016/j.matpur.2016.10.008, J. Math. Pures Appl. (9) 108 (2017), 14-40. (2017) Zbl1368.35207MR3660767DOI10.1016/j.matpur.2016.10.008
  9. Kim, J.-M., 10.1063/1.5128708, J. Math. Phys. 61 (2020), Article ID 011504, 6 pages. (2020) Zbl1432.76289MR4047930DOI10.1063/1.5128708
  10. Kim, J.-M., 10.3934/math.2021777, AIMS Math. 6 (2021), 13423-13431. (2021) Zbl07533493MR4332321DOI10.3934/math.2021777
  11. Kozono, H., 10.1006/jfan.2000.3625, J. Funct. Anal. 176 (2000), 153-197. (2000) Zbl0970.35106MR1784412DOI10.1006/jfan.2000.3625
  12. Miyakawa, T., 10.32917/hmj/1151007491, Hiroshima Math. J. 32 (2002), 431-462. (2002) Zbl1048.35063MR1954053DOI10.32917/hmj/1151007491
  13. Nečasová, Š., Penel, P., 10.1016/S0362-546X(01)00535-1, Nonlinear Anal., Theory Methods Appl., Ser. A 47 (2001), 4181-4191. (2001) Zbl1042.76504MR1972358DOI10.1016/S0362-546X(01)00535-1
  14. Oliver, M., Titi, E. S., 10.1006/jfan.1999.3550, J. Funct. Anal. 172 (2000), 1-18. (2000) Zbl0960.35081MR1749867DOI10.1006/jfan.1999.3550
  15. Samokhin, V. N., A magnetohydrodynamic-equation system for a nonlinearly viscous liquid, Differ. Equations 27 (1991), 628-636 translation from Differ. Uravn. 27 1991 886-896. (1991) Zbl0795.76094MR1117118
  16. Schonbek, M. E., 10.1080/03605308608820443, Commun. Partial Differ. Equations 11 (1986), 733-763. (1986) Zbl0607.35071MR0837929DOI10.1080/03605308608820443
  17. Secchi, P., 10.1512/iumj.1987.36.36039, Indiana Univ. Math. J. 36 (1987), 685-691. (1987) Zbl0635.35076MR0905619DOI10.1512/iumj.1987.36.36039
  18. Wiegner, M., 10.1112/jlms/s2-35.2.303, J. Lond. Math. Soc., II. Ser. 35 (1987), 303-313. (1987) Zbl0652.35095MR0881519DOI10.1112/jlms/s2-35.2.303
  19. Wilkinson, W. L., Non-Newtonian Fluids: Fluid Mechanics, Mixing and Heat Transfer, International Series of Monographs on Chemical Engineering 1. Pergamon Press, New York (1960). (1960) Zbl0124.41802MR0110392
  20. Xie, Q., Guo, Y., Dong, B.-Q., 10.1016/j.jmaa.2020.124641, J. Math. Anal. Appl. 494 (2021), Article ID 124641, 21 pages. (2021) Zbl1457.76027MR4161399DOI10.1016/j.jmaa.2020.124641
  21. Zhou, Y., 10.1081/PDE-200037770, Commun. Partial Differ. Equations 30 (2005), 323-333. (2005) Zbl1142.35548MR2131057DOI10.1081/PDE-200037770
  22. Zhou, Y., 10.1007/s00033-008-7045-y, Z. Angew. Math. Phys. 60 (2009), 191-204. (2009) Zbl1293.76049MR2486152DOI10.1007/s00033-008-7045-y

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.