C 1 , α regularity for elliptic equations with the general nonstandard growth conditions

Sungchol Kim; Dukman Ri

Mathematica Bohemica (2024)

  • Volume: 149, Issue: 3, page 365-396
  • ISSN: 0862-7959

Abstract

top
We study elliptic equations with the general nonstandard growth conditions involving Lebesgue measurable functions on Ω . We prove the global C 1 , α regularity of bounded weak solutions of these equations with the Dirichlet boundary condition. Our results generalize the C 1 , α regularity results for the elliptic equations in divergence form not only in the variable exponent case but also in the constant exponent case.

How to cite

top

Kim, Sungchol, and Ri, Dukman. "$C^{1,\alpha }$ regularity for elliptic equations with the general nonstandard growth conditions." Mathematica Bohemica 149.3 (2024): 365-396. <http://eudml.org/doc/299380>.

@article{Kim2024,
abstract = {We study elliptic equations with the general nonstandard growth conditions involving Lebesgue measurable functions on $\Omega $. We prove the global $C^\{1, \alpha \}$ regularity of bounded weak solutions of these equations with the Dirichlet boundary condition. Our results generalize the $C^\{1, \alpha \}$ regularity results for the elliptic equations in divergence form not only in the variable exponent case but also in the constant exponent case.},
author = {Kim, Sungchol, Ri, Dukman},
journal = {Mathematica Bohemica},
keywords = {nonstandard growth; $C^\{1, \alpha \}$ regularity; Hölder continuity; bounded weak solution; partial differential equations},
language = {eng},
number = {3},
pages = {365-396},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$C^\{1,\alpha \}$ regularity for elliptic equations with the general nonstandard growth conditions},
url = {http://eudml.org/doc/299380},
volume = {149},
year = {2024},
}

TY - JOUR
AU - Kim, Sungchol
AU - Ri, Dukman
TI - $C^{1,\alpha }$ regularity for elliptic equations with the general nonstandard growth conditions
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 3
SP - 365
EP - 396
AB - We study elliptic equations with the general nonstandard growth conditions involving Lebesgue measurable functions on $\Omega $. We prove the global $C^{1, \alpha }$ regularity of bounded weak solutions of these equations with the Dirichlet boundary condition. Our results generalize the $C^{1, \alpha }$ regularity results for the elliptic equations in divergence form not only in the variable exponent case but also in the constant exponent case.
LA - eng
KW - nonstandard growth; $C^{1, \alpha }$ regularity; Hölder continuity; bounded weak solution; partial differential equations
UR - http://eudml.org/doc/299380
ER -

References

top
  1. Acerbi, E., Mingione, G., 10.1007/s002050100117, Arch. Ration. Mech. Anal. 156 (2001), 121-140. (2001) Zbl0984.49020MR1814973DOI10.1007/s002050100117
  2. Adamowicz, T., Toivanen, O., 10.1016/j.na.2015.05.023, Nonlinear Anal., Theory Methods Appl., Ser. A 125 (2015), 433-456. (2015) Zbl1322.49059MR3373594DOI10.1016/j.na.2015.05.023
  3. Adams, R. A., Fournier, J. J. F., Sobolev Spaces, Pure and Mathematics 140. Elsevier, Amsterdam (2003). (2003) Zbl1098.46001MR2424078
  4. Antontsev, S., Shmarev, S., Evolution PDEs with Nonstandard Growth Conditions: Existence, Uniqueness, Localization, Blow-up, Atlantis Studies in Differential Equations 4. Atlantis Press, Amsterdam (2015). (2015) Zbl1410.35001MR3328376
  5. Baroni, P., Colombo, M., Mingione, G., 10.1090/spmj/1392, St. Petersbg. Math. J. 27 (2016), 347-379. (2016) Zbl1335.49057MR3570955DOI10.1090/spmj/1392
  6. Beck, L., 10.1007/978-3-319-27485-0, Lecture Notes of the Unione Matematica Italiana 19. Springer, Cham (2016). (2016) Zbl1346.35001MR3468875DOI10.1007/978-3-319-27485-0
  7. Chen, Y., Levine, S., Rao, M., 10.1137/050624522, SIAM J. Appl. Math. 66 (2006), 1383-1406. (2006) Zbl1102.49010MR2246061DOI10.1137/050624522
  8. Piat, V. Chiadò, Coscia, A., 10.1007/BF02677472, Manuscr. Math. 93 (1997), 283-299. (1997) Zbl0878.49010MR1457729DOI10.1007/BF02677472
  9. Colombo, M., Mingione, G., 10.1007/s00205-015-0859-9, Arch. Ration. Mech. Anal. 218 (2015), 219-273. (2015) Zbl1325.49042MR3360738DOI10.1007/s00205-015-0859-9
  10. Colombo, M., Mingione, G., 10.1007/s00205-014-0785-2, Arch. Ration. Mech. Anal. 215 (2015), 443-496. (2015) Zbl1322.49065MR3294408DOI10.1007/s00205-014-0785-2
  11. Coscia, A., Mingione, G., 10.1016/S0764-4442(99)80226-2, C. R. Acad. Sci., Paris, Sér. I, Math. 328 (1999), 363-368. (1999) Zbl0920.49020MR1675954DOI10.1016/S0764-4442(99)80226-2
  12. Cruz-Uribe, D. V., Fiorenza, A., 10.1007/978-3-0348-0548-3, Applied and Numerical Harmonic Analysis. Birkhäuser, Heidelberg (2013). (2013) Zbl1268.46002MR3026953DOI10.1007/978-3-0348-0548-3
  13. Diening, L., Harjulehto, P., Hästö, P., Růžička, M., 10.1007/978-3-642-18363-8, Lecture Notes in Mathematics 2017. Springer, Berlin (2011). (2011) Zbl1222.46002MR2790542DOI10.1007/978-3-642-18363-8
  14. Diening, L., Schwarzacher, S., 10.1016/j.na.2014.04.006, Nonlinear Anal., Theory Methods Appl., Ser. A 106 (2014), 70-85. (2014) Zbl1291.35070MR3209686DOI10.1016/j.na.2014.04.006
  15. Eleuteri, M., Hölder continuity results for a class of functionals with non-standard growth, Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 7 (2004), 129-157. (2004) Zbl1178.49045MR2044264
  16. Fan, X., 10.1016/j.jde.2007.01.008, J. Differ. Equations 235 (2007), 397-417. (2007) Zbl1143.35040MR2317489DOI10.1016/j.jde.2007.01.008
  17. Fan, X., Zhao, D., 10.1016/S0362-546X(97)00628-7, Nonlinear Anal., Theory Methods Appl. 36 (1999), 295-318. (1999) Zbl0927.46022MR1688232DOI10.1016/S0362-546X(97)00628-7
  18. Fan, X., Zhao, D., 10.1016/S0362-546X(98)00239-9, Nonlinear Anal., Theory Methods Appl., Ser. A 39 (2000), 807-816. (2000) Zbl0943.49029MR1736389DOI10.1016/S0362-546X(98)00239-9
  19. Fusco, N., Sbordone, C., 10.1080/03605309308820924, Commun. Partial Differ. Equations 18 (1993), 153-167. (1993) Zbl0795.49025MR1211728DOI10.1080/03605309308820924
  20. Giannetti, F., Napoli, A. Passarelli di, 10.1016/j.jde.2012.10.011, J. Differ. Equations 254 (2013), 1280-1305. (2013) Zbl1255.49064MR2997371DOI10.1016/j.jde.2012.10.011
  21. Gilbarg, D., Trudinger, N. S., 10.1007/978-3-642-61798-0, Classics in Mathematics. Springer, Berlin (2001). (2001) Zbl1042.35002MR1814364DOI10.1007/978-3-642-61798-0
  22. Giusti, E., 10.1142/5002, World Scientific, Singapore (2003). (2003) Zbl1028.49001MR1962933DOI10.1142/5002
  23. Gordadze, E., Meskhi, A., Ragusa, M. A., On some extrapolation in generalized grand Morrey spaces and applications to partial differential equations, Trans. A. Razmadze Math. Inst. 176 (2022), 435-441. (2022) Zbl1522.42052MR4524235
  24. Harjulehto, P., Hästö, P., Lê, Ú. V., Nuortio, M., 10.1016/j.na.2010.02.033, Nonlinear Anal., Theory Methods Appl., Ser. A 72 (2010), 4551-4574. (2010) Zbl1188.35072MR2639204DOI10.1016/j.na.2010.02.033
  25. Harjulehto, P., Kuusi, T., Lukkari, T., Marola, N., Parviainen, M., 10.1016/j.jmaa.2008.03.018, J. Math. Anal. Appl. 344 (2008), 504-520. (2008) Zbl1145.49023MR2416324DOI10.1016/j.jmaa.2008.03.018
  26. Kim, S., Ri, D., 10.1016/j.na.2019.02.016, Nonlinear Anal., Theory Methods Appl., Ser. A 185 (2019), 170-192. (2019) Zbl1419.49045MR3926581DOI10.1016/j.na.2019.02.016
  27. Lieberman, G. M., 10.1016/0362-546X(88)90053-3, Nonlinear Anal., Theory Methods Appl. 12 (1988), 1203-1219. (1988) Zbl0675.35042MR0969499DOI10.1016/0362-546X(88)90053-3
  28. Lieberman, G. M., 10.1080/03605309108820761, Commun. Partial Differ. Equations 16 (1991), 311-361. (1991) Zbl0742.35028MR1104103DOI10.1080/03605309108820761
  29. Marcellini, P., 10.1007/BF00251503, Arch. Ration. Mech. Anal. 105 (1989), 267-284. (1989) Zbl0667.49032MR0969900DOI10.1007/BF00251503
  30. Mingione, G., 10.1007/s10778-006-0110-3, Appl. Math., Praha 51 (2006), 355-426. (2006) Zbl1164.49324MR2291779DOI10.1007/s10778-006-0110-3
  31. Rădulescu, V. D., Repovš, D. D., 10.1201/b18601, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2015). (2015) Zbl1343.35003MR3379920DOI10.1201/b18601
  32. Rajagopal, K. R., Růžička, M., 10.1007/s001610100034, Contin. Mech. Thermodyn. 13 (2001), 59-78. (2001) Zbl0971.76100DOI10.1007/s001610100034
  33. Růžička, M., 10.1007/BFb0104029, Lecture Notes in Mathematics 1748. Springer, Berlin (2000). (2000) Zbl0962.76001MR1810360DOI10.1007/BFb0104029
  34. Toivanen, O., 10.1016/j.na.2012.10.024, Nonlinear Anal., Theory Methods Appl., Ser. A 81 (2013), 62-69. (2013) Zbl1275.49068MR3016440DOI10.1016/j.na.2012.10.024
  35. Tolksdorf, P., 10.1016/0022-0396(84)90105-0, J. Differ. Equations 51 (1984), 126-150. (1984) Zbl0488.35017MR0727034DOI10.1016/0022-0396(84)90105-0
  36. Yao, F., 10.1016/j.na.2012.09.017, Nonlinear Anal., Theory Methods Appl., Ser. A 78 (2013), 79-85. (2013) Zbl1320.35169MR2992987DOI10.1016/j.na.2012.09.017
  37. Yu, C., Ri, D., 10.1016/j.na.2017.02.019, Nonlinear Anal., Theory Methods Appl., Ser. A 156 (2017), 144-166. (2017) Zbl1375.35127MR3634773DOI10.1016/j.na.2017.02.019
  38. Zhang, C., Zhou, S., 10.1016/j.jmaa.2011.12.047, J. Math. Anal. Appl. 389 (2012), 1066-1077. (2012) Zbl1234.35122MR2879280DOI10.1016/j.jmaa.2011.12.047
  39. Zhang, H., 10.1155/2022/1501851, J. Funct. Spaces 2022 (2022), 1501851, 6 pages. (2022) Zbl1485.35097MR4389530DOI10.1155/2022/1501851
  40. Zhikov, V. V., 10.1070/IM1987v029n01ABEH000958, Math. USSR, Izv. 29 (1987), 33-66. (1987) Zbl0599.49031MR0864171DOI10.1070/IM1987v029n01ABEH000958

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.