Multiscale homogenization of nonlinear hyperbolic-parabolic equations

Abdelhakim Dehamnia; Hamid Haddadou

Applications of Mathematics (2023)

  • Volume: 68, Issue: 2, page 153-169
  • ISSN: 0862-7940

Abstract

top
The main purpose of the present paper is to study the asymptotic behavior (when ε 0 ) of the solution related to a nonlinear hyperbolic-parabolic problem given in a periodically heterogeneous domain with multiple spatial scales and one temporal scale. Under certain assumptions on the problem’s coefficients and based on a priori estimates and compactness results, we establish homogenization results by using the multiscale convergence method.

How to cite

top

Dehamnia, Abdelhakim, and Haddadou, Hamid. "Multiscale homogenization of nonlinear hyperbolic-parabolic equations." Applications of Mathematics 68.2 (2023): 153-169. <http://eudml.org/doc/299399>.

@article{Dehamnia2023,
abstract = {The main purpose of the present paper is to study the asymptotic behavior (when $\varepsilon \rightarrow 0$) of the solution related to a nonlinear hyperbolic-parabolic problem given in a periodically heterogeneous domain with multiple spatial scales and one temporal scale. Under certain assumptions on the problem’s coefficients and based on a priori estimates and compactness results, we establish homogenization results by using the multiscale convergence method.},
author = {Dehamnia, Abdelhakim, Haddadou, Hamid},
journal = {Applications of Mathematics},
keywords = {nonlinear hyperbolic-parabolic equation; homogenization; multiscale convergence method},
language = {eng},
number = {2},
pages = {153-169},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Multiscale homogenization of nonlinear hyperbolic-parabolic equations},
url = {http://eudml.org/doc/299399},
volume = {68},
year = {2023},
}

TY - JOUR
AU - Dehamnia, Abdelhakim
AU - Haddadou, Hamid
TI - Multiscale homogenization of nonlinear hyperbolic-parabolic equations
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 2
SP - 153
EP - 169
AB - The main purpose of the present paper is to study the asymptotic behavior (when $\varepsilon \rightarrow 0$) of the solution related to a nonlinear hyperbolic-parabolic problem given in a periodically heterogeneous domain with multiple spatial scales and one temporal scale. Under certain assumptions on the problem’s coefficients and based on a priori estimates and compactness results, we establish homogenization results by using the multiscale convergence method.
LA - eng
KW - nonlinear hyperbolic-parabolic equation; homogenization; multiscale convergence method
UR - http://eudml.org/doc/299399
ER -

References

top
  1. Allaire, G., Briane, M., 10.1017/S0308210500022757, Proc. R. Soc. Edinb., Sect. A 126 (1996), 297-342. (1996) Zbl0866.35017MR1386865DOI10.1017/S0308210500022757
  2. Bensoussan, A., Lions, J. L., Papanicolaou, G., Perturbations et ``augmentation'' des conditions initiales, Singular Perturbations and Boundary Layer Theory Lecture Notes in Mathematics 594. Springer, Berlin (1977), 10-29. (1977) Zbl0362.35005MR0460848
  3. Cioranescu, D., Donato, P., An Introduction to Homogenization, Oxford Lecture Series in Mathematics and Its Applications 17. Oxford University Press, Oxford (1999). (1999) Zbl0939.35001MR1765047
  4. Clark, M. R., 10.1155/S0161171294001067, Int. J. Math. Math. Sci. 17 (1994), 759-769. (1994) Zbl0813.35046MR1298800DOI10.1155/S0161171294001067
  5. Lima, O. A. de, 10.1080/00036818708839657, Appl. Anal. 24 (1987), 101-116. (1987) Zbl0589.35063MR0904737DOI10.1080/00036818708839657
  6. Douanla, A., Tetsadjio, E., Reiterated homogenization of hyperbolic-parabolic equations in domains with tiny holes, Electron. J. Differ. Equ. 2017 (2017), Article ID 59, 22 pages. (2017) Zbl1370.35038MR3625939
  7. Flodén, L., Holmbom, A., Lindberg, M. Olsson, Persson, J., 10.1155/2014/101685, J. Appl. Math. 2014 (2014), Article ID 101685, 16 pages. (2014) Zbl1406.35140MR3176810DOI10.1155/2014/101685
  8. Flodén, L., Persson, J., 10.3934/nhm.2016012, Netw. Heterog.s Media 11 (2016), 627-653. (2016) Zbl1356.35030MR3577222DOI10.3934/nhm.2016012
  9. Holmbom, A., Svanstedt, N., Wellander, N., 10.1007/s10492-005-0009-z, Appl. Math., Praha 50 (2005), 131-151. (2005) Zbl1099.35011MR2125155DOI10.1007/s10492-005-0009-z
  10. Migórski, S., Homogenization of hyperbolic-parabolic equations in perforated domains, Univ. Iagell. Acta Math. 33 (1996), 59-72. (1996) Zbl0880.35016MR1422438
  11. Nguetseng, G., 10.1137/0520043, SIAM J. Math. Anal. 20 (1989), 608-623. (1989) Zbl0688.35007MR0990867DOI10.1137/0520043
  12. Persson, J., 10.1007/s10492-012-0013-z, Appl. Math., Praha 57 (2012), 191-214. (2012) Zbl1265.35018MR2984600DOI10.1007/s10492-012-0013-z
  13. Yang, Z., Zhao, X., 10.3770/j.issn:2095-2651.2016.04.011, J. Math. Res. Appl. 36 (2016), 485-494. (2016) Zbl1374.35045MR3559015DOI10.3770/j.issn:2095-2651.2016.04.011
  14. Yassine, H., 10.1216/JIE-2013-25-4-517, J. Integral Equations Appl. 25 (2013), 517-555. (2013) Zbl1286.35042MR3161624DOI10.1216/JIE-2013-25-4-517

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.