Multiscale homogenization of nonlinear hyperbolic-parabolic equations
Abdelhakim Dehamnia; Hamid Haddadou
Applications of Mathematics (2023)
- Volume: 68, Issue: 2, page 153-169
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topDehamnia, Abdelhakim, and Haddadou, Hamid. "Multiscale homogenization of nonlinear hyperbolic-parabolic equations." Applications of Mathematics 68.2 (2023): 153-169. <http://eudml.org/doc/299399>.
@article{Dehamnia2023,
abstract = {The main purpose of the present paper is to study the asymptotic behavior (when $\varepsilon \rightarrow 0$) of the solution related to a nonlinear hyperbolic-parabolic problem given in a periodically heterogeneous domain with multiple spatial scales and one temporal scale. Under certain assumptions on the problem’s coefficients and based on a priori estimates and compactness results, we establish homogenization results by using the multiscale convergence method.},
author = {Dehamnia, Abdelhakim, Haddadou, Hamid},
journal = {Applications of Mathematics},
keywords = {nonlinear hyperbolic-parabolic equation; homogenization; multiscale convergence method},
language = {eng},
number = {2},
pages = {153-169},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Multiscale homogenization of nonlinear hyperbolic-parabolic equations},
url = {http://eudml.org/doc/299399},
volume = {68},
year = {2023},
}
TY - JOUR
AU - Dehamnia, Abdelhakim
AU - Haddadou, Hamid
TI - Multiscale homogenization of nonlinear hyperbolic-parabolic equations
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 2
SP - 153
EP - 169
AB - The main purpose of the present paper is to study the asymptotic behavior (when $\varepsilon \rightarrow 0$) of the solution related to a nonlinear hyperbolic-parabolic problem given in a periodically heterogeneous domain with multiple spatial scales and one temporal scale. Under certain assumptions on the problem’s coefficients and based on a priori estimates and compactness results, we establish homogenization results by using the multiscale convergence method.
LA - eng
KW - nonlinear hyperbolic-parabolic equation; homogenization; multiscale convergence method
UR - http://eudml.org/doc/299399
ER -
References
top- Allaire, G., Briane, M., 10.1017/S0308210500022757, Proc. R. Soc. Edinb., Sect. A 126 (1996), 297-342. (1996) Zbl0866.35017MR1386865DOI10.1017/S0308210500022757
- Bensoussan, A., Lions, J. L., Papanicolaou, G., Perturbations et ``augmentation'' des conditions initiales, Singular Perturbations and Boundary Layer Theory Lecture Notes in Mathematics 594. Springer, Berlin (1977), 10-29. (1977) Zbl0362.35005MR0460848
- Cioranescu, D., Donato, P., An Introduction to Homogenization, Oxford Lecture Series in Mathematics and Its Applications 17. Oxford University Press, Oxford (1999). (1999) Zbl0939.35001MR1765047
- Clark, M. R., 10.1155/S0161171294001067, Int. J. Math. Math. Sci. 17 (1994), 759-769. (1994) Zbl0813.35046MR1298800DOI10.1155/S0161171294001067
- Lima, O. A. de, 10.1080/00036818708839657, Appl. Anal. 24 (1987), 101-116. (1987) Zbl0589.35063MR0904737DOI10.1080/00036818708839657
- Douanla, A., Tetsadjio, E., Reiterated homogenization of hyperbolic-parabolic equations in domains with tiny holes, Electron. J. Differ. Equ. 2017 (2017), Article ID 59, 22 pages. (2017) Zbl1370.35038MR3625939
- Flodén, L., Holmbom, A., Lindberg, M. Olsson, Persson, J., 10.1155/2014/101685, J. Appl. Math. 2014 (2014), Article ID 101685, 16 pages. (2014) Zbl1406.35140MR3176810DOI10.1155/2014/101685
- Flodén, L., Persson, J., 10.3934/nhm.2016012, Netw. Heterog.s Media 11 (2016), 627-653. (2016) Zbl1356.35030MR3577222DOI10.3934/nhm.2016012
- Holmbom, A., Svanstedt, N., Wellander, N., 10.1007/s10492-005-0009-z, Appl. Math., Praha 50 (2005), 131-151. (2005) Zbl1099.35011MR2125155DOI10.1007/s10492-005-0009-z
- Migórski, S., Homogenization of hyperbolic-parabolic equations in perforated domains, Univ. Iagell. Acta Math. 33 (1996), 59-72. (1996) Zbl0880.35016MR1422438
- Nguetseng, G., 10.1137/0520043, SIAM J. Math. Anal. 20 (1989), 608-623. (1989) Zbl0688.35007MR0990867DOI10.1137/0520043
- Persson, J., 10.1007/s10492-012-0013-z, Appl. Math., Praha 57 (2012), 191-214. (2012) Zbl1265.35018MR2984600DOI10.1007/s10492-012-0013-z
- Yang, Z., Zhao, X., 10.3770/j.issn:2095-2651.2016.04.011, J. Math. Res. Appl. 36 (2016), 485-494. (2016) Zbl1374.35045MR3559015DOI10.3770/j.issn:2095-2651.2016.04.011
- Yassine, H., 10.1216/JIE-2013-25-4-517, J. Integral Equations Appl. 25 (2013), 517-555. (2013) Zbl1286.35042MR3161624DOI10.1216/JIE-2013-25-4-517
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.