Multiscale convergence and reiterated homogenization of parabolic problems
Anders Holmbom; Nils Svanstedt; Niklas Wellander
Applications of Mathematics (2005)
- Volume: 50, Issue: 2, page 131-151
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHolmbom, Anders, Svanstedt, Nils, and Wellander, Niklas. "Multiscale convergence and reiterated homogenization of parabolic problems." Applications of Mathematics 50.2 (2005): 131-151. <http://eudml.org/doc/33212>.
@article{Holmbom2005,
abstract = {Reiterated homogenization is studied for divergence structure parabolic problems of the form $\partial u_\{\varepsilon \}/\partial t - \operatorname\{div\}\bigl (a\bigl (x,x/\varepsilon ,x/\varepsilon ^2, t,t/\varepsilon ^\{k\}\bigr )\nabla u_\{\varepsilon \}\bigr )=f$. It is shown that under standard assumptions on the function $a(x,y_1,y_2,t,\tau )$ the sequence $\lbrace u_\epsilon \rbrace $ of solutions converges weakly in $L^2(0,T;H^1_0(\Omega ))$ to the solution $u$ of the homogenized problem $\partial u/\partial t -\operatorname\{div\}(b(x,t)\nabla u)=f$.},
author = {Holmbom, Anders, Svanstedt, Nils, Wellander, Niklas},
journal = {Applications of Mathematics},
keywords = {reiterated homogenization; multiscale convergence; parabolic equation; reiterated homogenization; multiscale convergence; parabolic equation},
language = {eng},
number = {2},
pages = {131-151},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Multiscale convergence and reiterated homogenization of parabolic problems},
url = {http://eudml.org/doc/33212},
volume = {50},
year = {2005},
}
TY - JOUR
AU - Holmbom, Anders
AU - Svanstedt, Nils
AU - Wellander, Niklas
TI - Multiscale convergence and reiterated homogenization of parabolic problems
JO - Applications of Mathematics
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 2
SP - 131
EP - 151
AB - Reiterated homogenization is studied for divergence structure parabolic problems of the form $\partial u_{\varepsilon }/\partial t - \operatorname{div}\bigl (a\bigl (x,x/\varepsilon ,x/\varepsilon ^2, t,t/\varepsilon ^{k}\bigr )\nabla u_{\varepsilon }\bigr )=f$. It is shown that under standard assumptions on the function $a(x,y_1,y_2,t,\tau )$ the sequence $\lbrace u_\epsilon \rbrace $ of solutions converges weakly in $L^2(0,T;H^1_0(\Omega ))$ to the solution $u$ of the homogenized problem $\partial u/\partial t -\operatorname{div}(b(x,t)\nabla u)=f$.
LA - eng
KW - reiterated homogenization; multiscale convergence; parabolic equation; reiterated homogenization; multiscale convergence; parabolic equation
UR - http://eudml.org/doc/33212
ER -
References
top- 10.1017/S0308210500022757, Proc. R. Soc. Edinb. 126 (1996), 297–342. (1996) MR1386865DOI10.1017/S0308210500022757
- 10.1002/cpa.3160400502, Commun. Pure Appl. Math. 40 (1987), 527–554. (1987) Zbl0629.73010MR0896766DOI10.1002/cpa.3160400502
- Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam-New York-Oxford, 1978. (1978) MR0503330
- An Introduction to Homogenization. Oxford Lecture Series in Mathematics and its Applications, Oxford Univ. Press, New York, 1999. (1999) MR1765047
- A corrector result for -converging parabolic problems with time-dependent coefficients. Dedicated to Ennio De Giorgi, Ann. Sc. Norm. Super. Pisa Cl. Sci. IV 25 (1997), 329–373. (1997) MR1655521
- 10.1023/A:1023049608047, Appl. Math. 42 (1997), 321–343. (1997) Zbl0898.35008MR1467553DOI10.1023/A:1023049608047
- 10.1142/S0252959901000024, Chin. Ann. Math. Ser. B 22 (2001), 1–12. (2001) MR1823125DOI10.1142/S0252959901000024
- A note on two-scale convergence of differential operators, Submitted.
- Navier-Stokes equations. Theory and Numerical Analysis, North-Holland, Amsterdam-New York-Oxford, 1977. (1977) Zbl0383.35057MR0609732
Citations in EuDML Documents
top- Anders Holmbom, Jeanette Silfver, Nils Svanstedt, Niklas Wellander, On two-scale convergence and related sequential compactness topics
- Liselott Flodén, Marianne Olsson, Homogenization of some parabolic operators with several time scales
- Abdelhakim Dehamnia, Hamid Haddadou, Multiscale homogenization of nonlinear hyperbolic-parabolic equations
- Jens Persson, Homogenization of monotone parabolic problems with several temporal scales
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.