Multiscale convergence and reiterated homogenization of parabolic problems

Anders Holmbom; Nils Svanstedt; Niklas Wellander

Applications of Mathematics (2005)

  • Volume: 50, Issue: 2, page 131-151
  • ISSN: 0862-7940

Abstract

top
Reiterated homogenization is studied for divergence structure parabolic problems of the form u ε / t - div a x , x / ε , x / ε 2 , t , t / ε k u ε = f . It is shown that under standard assumptions on the function a ( x , y 1 , y 2 , t , τ ) the sequence { u ϵ } of solutions converges weakly in L 2 ( 0 , T ; H 0 1 ( Ω ) ) to the solution u of the homogenized problem u / t - div ( b ( x , t ) u ) = f .

How to cite

top

Holmbom, Anders, Svanstedt, Nils, and Wellander, Niklas. "Multiscale convergence and reiterated homogenization of parabolic problems." Applications of Mathematics 50.2 (2005): 131-151. <http://eudml.org/doc/33212>.

@article{Holmbom2005,
abstract = {Reiterated homogenization is studied for divergence structure parabolic problems of the form $\partial u_\{\varepsilon \}/\partial t - \operatorname\{div\}\bigl (a\bigl (x,x/\varepsilon ,x/\varepsilon ^2, t,t/\varepsilon ^\{k\}\bigr )\nabla u_\{\varepsilon \}\bigr )=f$. It is shown that under standard assumptions on the function $a(x,y_1,y_2,t,\tau )$ the sequence $\lbrace u_\epsilon \rbrace $ of solutions converges weakly in $L^2(0,T;H^1_0(\Omega ))$ to the solution $u$ of the homogenized problem $\partial u/\partial t -\operatorname\{div\}(b(x,t)\nabla u)=f$.},
author = {Holmbom, Anders, Svanstedt, Nils, Wellander, Niklas},
journal = {Applications of Mathematics},
keywords = {reiterated homogenization; multiscale convergence; parabolic equation; reiterated homogenization; multiscale convergence; parabolic equation},
language = {eng},
number = {2},
pages = {131-151},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Multiscale convergence and reiterated homogenization of parabolic problems},
url = {http://eudml.org/doc/33212},
volume = {50},
year = {2005},
}

TY - JOUR
AU - Holmbom, Anders
AU - Svanstedt, Nils
AU - Wellander, Niklas
TI - Multiscale convergence and reiterated homogenization of parabolic problems
JO - Applications of Mathematics
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 2
SP - 131
EP - 151
AB - Reiterated homogenization is studied for divergence structure parabolic problems of the form $\partial u_{\varepsilon }/\partial t - \operatorname{div}\bigl (a\bigl (x,x/\varepsilon ,x/\varepsilon ^2, t,t/\varepsilon ^{k}\bigr )\nabla u_{\varepsilon }\bigr )=f$. It is shown that under standard assumptions on the function $a(x,y_1,y_2,t,\tau )$ the sequence $\lbrace u_\epsilon \rbrace $ of solutions converges weakly in $L^2(0,T;H^1_0(\Omega ))$ to the solution $u$ of the homogenized problem $\partial u/\partial t -\operatorname{div}(b(x,t)\nabla u)=f$.
LA - eng
KW - reiterated homogenization; multiscale convergence; parabolic equation; reiterated homogenization; multiscale convergence; parabolic equation
UR - http://eudml.org/doc/33212
ER -

References

top
  1. 10.1017/S0308210500022757, Proc. R. Soc. Edinb. 126 (1996), 297–342. (1996) MR1386865DOI10.1017/S0308210500022757
  2. 10.1002/cpa.3160400502, Commun. Pure Appl. Math. 40 (1987), 527–554. (1987) Zbl0629.73010MR0896766DOI10.1002/cpa.3160400502
  3. Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam-New York-Oxford, 1978. (1978) MR0503330
  4. An Introduction to Homogenization. Oxford Lecture Series in Mathematics and its Applications, Oxford Univ. Press, New York, 1999. (1999) MR1765047
  5. A corrector result for H -converging parabolic problems with time-dependent coefficients. Dedicated to Ennio De Giorgi, Ann. Sc. Norm. Super. Pisa Cl. Sci.  IV 25 (1997), 329–373. (1997) MR1655521
  6. 10.1023/A:1023049608047, Appl. Math. 42 (1997), 321–343. (1997) Zbl0898.35008MR1467553DOI10.1023/A:1023049608047
  7. 10.1142/S0252959901000024, Chin. Ann. Math. Ser.  B 22 (2001), 1–12. (2001) MR1823125DOI10.1142/S0252959901000024
  8. A note on two-scale convergence of differential operators, Submitted. 
  9. Navier-Stokes equations. Theory and Numerical Analysis, North-Holland, Amsterdam-New York-Oxford, 1977. (1977) Zbl0383.35057MR0609732

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.