A principal topology obtained from uninorms

Funda Karaçal; Tuncay Köroğlu

Kybernetika (2022)

  • Volume: 58, Issue: 6, page 863-882
  • ISSN: 0023-5954

Abstract

top
We obtain a principal topology and some related results. We also give some hints of possible applications. Some mathematical systems are both lattice and topological space. We show that a topology defined on the any bounded lattice is definable in terms of uninorms. Also, we see that these topologies satisfy the condition of the principal topology. These topologies can not be metrizable except for the discrete metric case. We show an equivalence relation on the class of uninorms on a bounded lattice based on equality of the topologies induced by uninorms.

How to cite

top

Karaçal, Funda, and Köroğlu, Tuncay. "A principal topology obtained from uninorms." Kybernetika 58.6 (2022): 863-882. <http://eudml.org/doc/299400>.

@article{Karaçal2022,
abstract = {We obtain a principal topology and some related results. We also give some hints of possible applications. Some mathematical systems are both lattice and topological space. We show that a topology defined on the any bounded lattice is definable in terms of uninorms. Also, we see that these topologies satisfy the condition of the principal topology. These topologies can not be metrizable except for the discrete metric case. We show an equivalence relation on the class of uninorms on a bounded lattice based on equality of the topologies induced by uninorms.},
author = {Karaçal, Funda, Köroğlu, Tuncay},
journal = {Kybernetika},
keywords = {uninorm; closure operator; principal topology; bounded lattice},
language = {eng},
number = {6},
pages = {863-882},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A principal topology obtained from uninorms},
url = {http://eudml.org/doc/299400},
volume = {58},
year = {2022},
}

TY - JOUR
AU - Karaçal, Funda
AU - Köroğlu, Tuncay
TI - A principal topology obtained from uninorms
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 6
SP - 863
EP - 882
AB - We obtain a principal topology and some related results. We also give some hints of possible applications. Some mathematical systems are both lattice and topological space. We show that a topology defined on the any bounded lattice is definable in terms of uninorms. Also, we see that these topologies satisfy the condition of the principal topology. These topologies can not be metrizable except for the discrete metric case. We show an equivalence relation on the class of uninorms on a bounded lattice based on equality of the topologies induced by uninorms.
LA - eng
KW - uninorm; closure operator; principal topology; bounded lattice
UR - http://eudml.org/doc/299400
ER -

References

top
  1. Alexandroff, P., Diskrete Raume., Mat. Sb. 2 (1937), 501-518. 
  2. Arenas, F. G., Alexandroff spaces., Acta Math. Univ. Comenianae 68 (1999), 17-25. MR1711071
  3. Aşıcı, E., Karaçal, F., , Inform. Sci. 267 (2014), 323-333. MR3177320DOI
  4. Baczyński, M., Jayaram, B., Fuzzy Implications., Studies in Fuzziness and Soft Computing, 231, Springer, Berlin, Heidelberg 2008. Zbl1293.03012MR2428086
  5. Birkhoff, G., Lattice Theory. Third edition., Providence 1967. MR0227053
  6. Dubois, D., Prade, H., Fundamentals of Fuzzy Sets., Kluwer Acad. Publ., Boston 2000. MR1890229
  7. Dubois, D., Prade, H., , Inform. Sci. 36 (1985), 85-121. Zbl0582.03040MR0813766DOI
  8. Echi, O., , Topology Appl. { mi 159} (2012), 2357-2366. MR2921825DOI
  9. Ertuğrul, Ü., Karaçal, F., Mesiar, R., , Int. J. Intell. Systems 30 (2015), 807-817. DOI
  10. Fodor, J., Yager, R., Rybalov, A., 10.1142/S0218488597000312, Int. J. Uncertain. Fuzziness Knowledge-Based Systems 5 (1997), 411-427. Zbl1232.03015MR1471619DOI10.1142/S0218488597000312
  11. Gang, L., Hua-Wen, L., , Fuzzy Sets Systems 332 (2018), 116-128. MR3732254DOI
  12. Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E., Aggregation Functions., Cambridge University Press, 2009. Zbl1206.68299MR2538324
  13. İnce, M. A., Karaçal, F., Mesiar, R., , Fuzzy Sets Systems 289 (2016),74-81. MR3454462DOI
  14. İnce, M. A., Karaçal, F., , Int. J. General Systems 48 (2019), 139-156. MR3892790DOI
  15. Karaçal, F., Ertuğrul, U., Kesicioğlu, M. N., , Kybernetika 57 (2021), 714-736. MR4332889DOI
  16. Karaçal, F., Mesiar, R., , Fuzzy Sets Systems 261 (2015), 33-43. MR3291484DOI
  17. Kelley, J. L., General Topology., Springer, New York 1975. MR0370454
  18. Kesicioğlu, M. N., Karaçal, F., Mesiar, R., , Fuzzy Sets Systems 268 (2015), 59-71. MR3320247DOI
  19. Khalimsky, E., Kopperman, R., Meyer, P. R., , Topology Appl. 36 (1990), 1-17. MR1062180DOI
  20. Klement, E. P., Mesiar, R., Pap, E., Triangular Norms., Kluwer, Boston - Dordrecht - London 2000. Zbl1087.20041MR1790096
  21. Kopperman, R., The Khalimsky line in digital topology., In: Shape in Picture: Mathematical Description of Shape in Grey-Level Images, NATO ASI Series. Computer and Systems Sciences, Springer, Berlin - Heidelberg - New York 126 (1994), 3-20. 
  22. Kovalevsky, V. A., , CVGIP 46 (1989), 141-161. DOI
  23. Kronheimer, E. H., , Topology Appl. 46 (1992), 279-303. MR1198735DOI
  24. Lazaar, S., Richmond, T., Turki, T., , Quaestiones Math. 40 (2017), 1, 17-28. MR3620975DOI
  25. Ma, Z., Wu, W. M., , Inform. Sci. 55 (1991), 77-97. Zbl0741.03010MR1080449DOI
  26. Melin, E., , J. Math. Imaging Vision 28 (2007), 169-177. MR2362923DOI
  27. Parikh, R., Moss, L. S., Steinsvold, C., Topology and epistemic logic., In: Handbook of Spatial Logics (2007), 299-341. MR2393890
  28. Richmond, B., , Topology Appl. 155 (2008), 1644-1649. MR2437013DOI
  29. Yager, R. R., Rybalov, A., , Fuzzy Sets Systems 80 (1996), 111-120. Zbl0871.04007MR1389951DOI
  30. Yager, R. R., , Fuzzy Sets Systems 122 (2001), 167-175. MR1839955DOI
  31. Yager, R. R., , Fuzzy Sets Systems 67 (1994), 129-145. MR1302575DOI
  32. Wang, Z. D., Fang, J. X., , Fuzzy Sets Systems 160 (2009), 22-31. MR2469427DOI
  33. Wang, Z. D., Fang, J. X., , Fuzzy Sets Systems 160 (2009), 2086-2096. Zbl1183.03027MR2555022DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.