A principal topology obtained from uninorms
Kybernetika (2022)
- Volume: 58, Issue: 6, page 863-882
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topKaraçal, Funda, and Köroğlu, Tuncay. "A principal topology obtained from uninorms." Kybernetika 58.6 (2022): 863-882. <http://eudml.org/doc/299400>.
@article{Karaçal2022,
abstract = {We obtain a principal topology and some related results. We also give some hints of possible applications. Some mathematical systems are both lattice and topological space. We show that a topology defined on the any bounded lattice is definable in terms of uninorms. Also, we see that these topologies satisfy the condition of the principal topology. These topologies can not be metrizable except for the discrete metric case. We show an equivalence relation on the class of uninorms on a bounded lattice based on equality of the topologies induced by uninorms.},
author = {Karaçal, Funda, Köroğlu, Tuncay},
journal = {Kybernetika},
keywords = {uninorm; closure operator; principal topology; bounded lattice},
language = {eng},
number = {6},
pages = {863-882},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A principal topology obtained from uninorms},
url = {http://eudml.org/doc/299400},
volume = {58},
year = {2022},
}
TY - JOUR
AU - Karaçal, Funda
AU - Köroğlu, Tuncay
TI - A principal topology obtained from uninorms
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 6
SP - 863
EP - 882
AB - We obtain a principal topology and some related results. We also give some hints of possible applications. Some mathematical systems are both lattice and topological space. We show that a topology defined on the any bounded lattice is definable in terms of uninorms. Also, we see that these topologies satisfy the condition of the principal topology. These topologies can not be metrizable except for the discrete metric case. We show an equivalence relation on the class of uninorms on a bounded lattice based on equality of the topologies induced by uninorms.
LA - eng
KW - uninorm; closure operator; principal topology; bounded lattice
UR - http://eudml.org/doc/299400
ER -
References
top- Alexandroff, P., Diskrete Raume., Mat. Sb. 2 (1937), 501-518.
- Arenas, F. G., Alexandroff spaces., Acta Math. Univ. Comenianae 68 (1999), 17-25. MR1711071
- Aşıcı, E., Karaçal, F., , Inform. Sci. 267 (2014), 323-333. MR3177320DOI
- Baczyński, M., Jayaram, B., Fuzzy Implications., Studies in Fuzziness and Soft Computing, 231, Springer, Berlin, Heidelberg 2008. Zbl1293.03012MR2428086
- Birkhoff, G., Lattice Theory. Third edition., Providence 1967. MR0227053
- Dubois, D., Prade, H., Fundamentals of Fuzzy Sets., Kluwer Acad. Publ., Boston 2000. MR1890229
- Dubois, D., Prade, H., , Inform. Sci. 36 (1985), 85-121. Zbl0582.03040MR0813766DOI
- Echi, O., , Topology Appl. { mi 159} (2012), 2357-2366. MR2921825DOI
- Ertuğrul, Ü., Karaçal, F., Mesiar, R., , Int. J. Intell. Systems 30 (2015), 807-817. DOI
- Fodor, J., Yager, R., Rybalov, A., 10.1142/S0218488597000312, Int. J. Uncertain. Fuzziness Knowledge-Based Systems 5 (1997), 411-427. Zbl1232.03015MR1471619DOI10.1142/S0218488597000312
- Gang, L., Hua-Wen, L., , Fuzzy Sets Systems 332 (2018), 116-128. MR3732254DOI
- Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E., Aggregation Functions., Cambridge University Press, 2009. Zbl1206.68299MR2538324
- İnce, M. A., Karaçal, F., Mesiar, R., , Fuzzy Sets Systems 289 (2016),74-81. MR3454462DOI
- İnce, M. A., Karaçal, F., , Int. J. General Systems 48 (2019), 139-156. MR3892790DOI
- Karaçal, F., Ertuğrul, U., Kesicioğlu, M. N., , Kybernetika 57 (2021), 714-736. MR4332889DOI
- Karaçal, F., Mesiar, R., , Fuzzy Sets Systems 261 (2015), 33-43. MR3291484DOI
- Kelley, J. L., General Topology., Springer, New York 1975. MR0370454
- Kesicioğlu, M. N., Karaçal, F., Mesiar, R., , Fuzzy Sets Systems 268 (2015), 59-71. MR3320247DOI
- Khalimsky, E., Kopperman, R., Meyer, P. R., , Topology Appl. 36 (1990), 1-17. MR1062180DOI
- Klement, E. P., Mesiar, R., Pap, E., Triangular Norms., Kluwer, Boston - Dordrecht - London 2000. Zbl1087.20041MR1790096
- Kopperman, R., The Khalimsky line in digital topology., In: Shape in Picture: Mathematical Description of Shape in Grey-Level Images, NATO ASI Series. Computer and Systems Sciences, Springer, Berlin - Heidelberg - New York 126 (1994), 3-20.
- Kovalevsky, V. A., , CVGIP 46 (1989), 141-161. DOI
- Kronheimer, E. H., , Topology Appl. 46 (1992), 279-303. MR1198735DOI
- Lazaar, S., Richmond, T., Turki, T., , Quaestiones Math. 40 (2017), 1, 17-28. MR3620975DOI
- Ma, Z., Wu, W. M., , Inform. Sci. 55 (1991), 77-97. Zbl0741.03010MR1080449DOI
- Melin, E., , J. Math. Imaging Vision 28 (2007), 169-177. MR2362923DOI
- Parikh, R., Moss, L. S., Steinsvold, C., Topology and epistemic logic., In: Handbook of Spatial Logics (2007), 299-341. MR2393890
- Richmond, B., , Topology Appl. 155 (2008), 1644-1649. MR2437013DOI
- Yager, R. R., Rybalov, A., , Fuzzy Sets Systems 80 (1996), 111-120. Zbl0871.04007MR1389951DOI
- Yager, R. R., , Fuzzy Sets Systems 122 (2001), 167-175. MR1839955DOI
- Yager, R. R., , Fuzzy Sets Systems 67 (1994), 129-145. MR1302575DOI
- Wang, Z. D., Fang, J. X., , Fuzzy Sets Systems 160 (2009), 22-31. MR2469427DOI
- Wang, Z. D., Fang, J. X., , Fuzzy Sets Systems 160 (2009), 2086-2096. Zbl1183.03027MR2555022DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.