On the Maxwell-wave equation coupling problem and its explicit finite-element solution
Larisa Beilina; Vitoriano Ruas
Applications of Mathematics (2023)
- Volume: 68, Issue: 1, page 75-98
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topBeilina, Larisa, and Ruas, Vitoriano. "On the Maxwell-wave equation coupling problem and its explicit finite-element solution." Applications of Mathematics 68.1 (2023): 75-98. <http://eudml.org/doc/299401>.
@article{Beilina2023,
abstract = {It is well known that in the case of constant dielectric permittivity and magnetic permeability, the electric field solving the Maxwell's equations is also a solution to the wave equation. The converse is also true under certain conditions. Here we study an intermediate situation in which the magnetic permeability is constant and a region with variable dielectric permittivity is surrounded by a region with a constant one, in which the unknown field satisfies the wave equation. In this case, such a field will be the solution of Maxwell's equation in the whole domain, as long as proper conditions are prescribed on its boundary. We show that an explicit finite-element scheme can be used to solve the resulting Maxwell-wave equation coupling problem in an inexpensive and reliable way. Optimal convergence in natural norms under reasonable assumptions holds for such a scheme, which is certified by numerical exemplification.},
author = {Beilina, Larisa, Ruas, Vitoriano},
journal = {Applications of Mathematics},
keywords = {constant magnetic permeability; dielectric permittivity; explicit scheme; finite element; mass lumping; Maxwell-wave equation},
language = {eng},
number = {1},
pages = {75-98},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the Maxwell-wave equation coupling problem and its explicit finite-element solution},
url = {http://eudml.org/doc/299401},
volume = {68},
year = {2023},
}
TY - JOUR
AU - Beilina, Larisa
AU - Ruas, Vitoriano
TI - On the Maxwell-wave equation coupling problem and its explicit finite-element solution
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 1
SP - 75
EP - 98
AB - It is well known that in the case of constant dielectric permittivity and magnetic permeability, the electric field solving the Maxwell's equations is also a solution to the wave equation. The converse is also true under certain conditions. Here we study an intermediate situation in which the magnetic permeability is constant and a region with variable dielectric permittivity is surrounded by a region with a constant one, in which the unknown field satisfies the wave equation. In this case, such a field will be the solution of Maxwell's equation in the whole domain, as long as proper conditions are prescribed on its boundary. We show that an explicit finite-element scheme can be used to solve the resulting Maxwell-wave equation coupling problem in an inexpensive and reliable way. Optimal convergence in natural norms under reasonable assumptions holds for such a scheme, which is certified by numerical exemplification.
LA - eng
KW - constant magnetic permeability; dielectric permittivity; explicit scheme; finite element; mass lumping; Maxwell-wave equation
UR - http://eudml.org/doc/299401
ER -
References
top- Ammari, H., Hamdache, K., 10.1016/S0022-247X(03)00415-3, J. Math. Anal. Appl. 286 (2003), 51-63. (2003) Zbl1039.35122MR2009617DOI10.1016/S0022-247X(03)00415-3
- Asadzadeh, M., Beilina, L., On stabilized finite element approximation for time harmonic Maxwell’s equations, Available at https://arxiv.org/abs/1906.02089v1 (2019), 25 pages. (2019) MR4141133
- Asadzadeh, M., Beilina, L., 10.1007/978-3-030-48634-1_4, Mathematical and Numerical Approaches for Multi-Wave Inverse Problems Springer Proceedings in Mathematics and Statistics 328. Springer, Cham (2020), 33-43. (2020) Zbl1446.65158MR4141133DOI10.1007/978-3-030-48634-1_4
- Assous, F., Degond, P., Heintze, E., Raviart, P. A., Segre, J., 10.1006/jcph.1993.1214, J. Comput. Phys. 109 (1993), 222-237 9999DOI99999 10.1006/jcph.1993.1214 . (1993) Zbl0795.65087MR1253460DOI10.1006/jcph.1993.1214
- Badia, S., Codina, R., 10.1137/110835360, SIAM J. Numer. Anal. 50 (2012), 398-417. (2012) Zbl1247.78034MR2914268DOI10.1137/110835360
- Beilina, L., 10.2478/s11533-013-0202-3, Cent. Eur. J. Math. 11 (2013), 702-733. (2013) Zbl1267.78044MR3015394DOI10.2478/s11533-013-0202-3
- Beilina, L., WavES (Wave Equations Solutions), Available at https://waves24.com/.
- Beilina, L., Cristofol, M., Niinimäki, K., 10.3934/ipi.2015.9.1, Inverse Probl. Imaging 9 (2015), 1-25. (2015) Zbl1308.35296MR3305884DOI10.3934/ipi.2015.9.1
- Beilina, L., Grote, M. J., Adaptive hybrid finite element/difference method for Maxwell's equations, TWMS J. Pure Appl. Math. 1 (2010), 176-197. (2010) Zbl1236.78028MR2766623
- Beilina, L., Ruas, V., An explicit finite-element scheme for Maxwell’s equations with constant permittivity in a boundary neighborhood, Available at https://arxiv.org/abs/1808.10720v4 (2020), 38 pages. (2020)
- Beilina, L., Ruas, V., 10.1007/978-3-030-48634-1_7, Mathematical and Numerical Approaches for Multi-Wave Inverse Problems Springer Proceedings in Mathematics & Statistics 328. Springer, Cham (2020), 91-103. (2020) Zbl07240119MR4141136DOI10.1007/978-3-030-48634-1_7
- Beilina, L., Thành, N. T., Klibanov, M. V., Malmberg, J. B., 10.1016/j.cam.2014.11.055, J. Comput. Appl. Math. 289 (2015), 371-391. (2015) Zbl1332.78020MR3350783DOI10.1016/j.cam.2014.11.055
- Bossavit, A., Computational Electromagnetism: Variational Formulations, Complementary, Edge Elements, Electromagnetism, Vol. 2 Academic Press, New York (1998). (1998) Zbl0945.78001MR1488417
- Brezzi, F., Fortin, M., 10.1007/978-1-4612-3172-1, Springer Series in Computational Mathematics 15. Springer, New York (1991). (1991) Zbl0788.73002MR1115205DOI10.1007/978-1-4612-3172-1
- Araujo, J. H. Carneiro de, Gomes, P. D., Ruas, V., 10.1016/j.cam.2010.03.025, J. Comput. Appl. Math. 234 (2010), 2562-2577. (2010) Zbl1425.76025MR2645211DOI10.1016/j.cam.2010.03.025
- Chen, C., Wahl, W. von., Das Rand-Anfangswertproblem für quasilineare Wellengleichungen in Sobolevräumen niedriger Ordnung, J. Reine Angew. Math. 337 (1982), 77-112 German 9999DOI99999 10.1515/crll.1982.337.77 . (1982) Zbl0486.35053MR0676043
- Ciarlet, P. G., The Finite Element Method for Elliptic Problems, Studies in Mathematics and Its Applications 4. North-Holland, Amsterdam (1978). (1978) Zbl0383.65058MR0520174
- P. Ciarlet, Jr., 10.1016/j.cma.2004.05.021, Comput. Methods Appl. Mech. Eng. 194 (2005), 559-586. (2005) Zbl1063.78018MR2105182DOI10.1016/j.cma.2004.05.021
- P. Ciarlet, Jr., E. Jamelot, 10.1016/j.jcp.2007.05.029, J. Comput. Phys. 226 (2007), 1122-1135. (2007) Zbl1128.78002MR2356870DOI10.1016/j.jcp.2007.05.029
- Cohen, G., Monk, P., 10.1002/(SICI)1098-2426(199801)14:1<63::AID-NUM4>3.0.CO;2-J, Numer. Methods Partial Differ. Equations 14 (1998), 63-88. (1998) Zbl0891.65130MR1601785DOI10.1002/(SICI)1098-2426(199801)14:1<63::AID-NUM4>3.0.CO;2-J
- Costabel, M., Dauge, M., 10.1007/s002110100388, Numer. Math. 93 (2002), 239-277. (2002) Zbl1019.78009MR1941397DOI10.1007/s002110100388
- Elmkies, A., Joly, P., 10.1016/S0764-4442(99)80415-7, C. R. Acad. Sci., Paris, Sér. I 324 (1997), 1287-1293 French. (1997) Zbl0877.65081MR1456303DOI10.1016/S0764-4442(99)80415-7
- Girault, V., Raviart, P.-A., 10.1007/978-3-642-61623-5, Springer Series in Computational Mathematics 5. Springer, Berlin (1986). (1986) Zbl0585.65077MR0851383DOI10.1007/978-3-642-61623-5
- Jamelot, E., Résolution des équations de Maxwell avec des éléments finis de Galerkin continus: Thèse doctorale, L'École Polytechnique, Paris (2005), French. (2005) Zbl1185.65006
- Joly, P., 10.1007/978-3-642-55483-4_6, Topics in Computational Wave Propagation: Direct and Inverse Problems Lecture Notes in Computational Science and Engineering 31. Springer, Berlin (2003), 201-264. (2003) Zbl1049.78028MR2032871DOI10.1007/978-3-642-55483-4_6
- Křížek, M., Neittaanmäki, P., Finite Element Approximation of Variational Problems and Applications, Pitman Monographs and Surveys in Pure and Applied Mathematics 50. Longman, Harlow (1990). (1990) Zbl0708.65106MR1066462
- Malmerg, J. B., 10.1007/978-3-319-12499-5_3, Inverse Problems and Applications Springer Proceedings in Mathematics & Statistics 120. Springer, Cham (2015), 43-53. (2015) Zbl1319.78014MR3343199DOI10.1007/978-3-319-12499-5_3
- Malmberg, J. B., Efficient Adaptive Algorithms for an Electromagnetic Coefficient Inverse Problem: Doctoral Thesis, University of Gothenburg, Gothenburg (2017). (2017)
- Malmberg, J. B., Beilina, L., 10.1063/1.4992549, AIP Conf. Proc. 1863 (2017), Article ID 370002. (2017) DOI10.1063/1.4992549
- Malmberg, J. B., Beilina, L., 10.18576/amis/120101, Appl. Math. Inf. Sci. 12 (2018), 1-19. (2018) MR3747879DOI10.18576/amis/120101
- Monk, P., 10.1093/acprof:oso/9780198508885.001.0001, Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2003). (2003) Zbl1024.78009MR2059447DOI10.1093/acprof:oso/9780198508885.001.0001
- Nedelec, J.-C., 10.1007/BF01396415, Numer. Math. 35 (1980), 315-341. (1980) Zbl0419.65069MR0592160DOI10.1007/BF01396415
- Patsakos, G., 10.1119/1.11745, Am. J. Phys. 47 (1979), 698-699. (1979) DOI10.1119/1.11745
- Thành, N. T., Beilina, L., Klibanov, M. V., Fiddy, M. A., 10.1137/130924962, SIAM J. Sci. Comput. 36 (2014), B273--B293. (2014) Zbl1410.78018MR3199422DOI10.1137/130924962
- Thành, N. T., Beilina, L., Klibanov, M. V., Fiddy, M. A., 10.1137/140972469, SIAM J. Imaging Sci. 8 (2015), 757-786. (2015) Zbl1432.35259MR3327354DOI10.1137/140972469
- Wang, L., On Korn's inequality, J. Comput. Math. 21 (2003), 321-324. (2003) Zbl1151.74311MR1978636
- Zuo, L., Hou, Y., 10.1002/num.21933, Numer. Methods Partial Differ. Equations 31 (2015), 1009-1030. (2015) Zbl1329.76194MR3343597DOI10.1002/num.21933
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.