On the Maxwell-wave equation coupling problem and its explicit finite-element solution

Larisa Beilina; Vitoriano Ruas

Applications of Mathematics (2023)

  • Volume: 68, Issue: 1, page 75-98
  • ISSN: 0862-7940

Abstract

top
It is well known that in the case of constant dielectric permittivity and magnetic permeability, the electric field solving the Maxwell's equations is also a solution to the wave equation. The converse is also true under certain conditions. Here we study an intermediate situation in which the magnetic permeability is constant and a region with variable dielectric permittivity is surrounded by a region with a constant one, in which the unknown field satisfies the wave equation. In this case, such a field will be the solution of Maxwell's equation in the whole domain, as long as proper conditions are prescribed on its boundary. We show that an explicit finite-element scheme can be used to solve the resulting Maxwell-wave equation coupling problem in an inexpensive and reliable way. Optimal convergence in natural norms under reasonable assumptions holds for such a scheme, which is certified by numerical exemplification.

How to cite

top

Beilina, Larisa, and Ruas, Vitoriano. "On the Maxwell-wave equation coupling problem and its explicit finite-element solution." Applications of Mathematics 68.1 (2023): 75-98. <http://eudml.org/doc/299401>.

@article{Beilina2023,
abstract = {It is well known that in the case of constant dielectric permittivity and magnetic permeability, the electric field solving the Maxwell's equations is also a solution to the wave equation. The converse is also true under certain conditions. Here we study an intermediate situation in which the magnetic permeability is constant and a region with variable dielectric permittivity is surrounded by a region with a constant one, in which the unknown field satisfies the wave equation. In this case, such a field will be the solution of Maxwell's equation in the whole domain, as long as proper conditions are prescribed on its boundary. We show that an explicit finite-element scheme can be used to solve the resulting Maxwell-wave equation coupling problem in an inexpensive and reliable way. Optimal convergence in natural norms under reasonable assumptions holds for such a scheme, which is certified by numerical exemplification.},
author = {Beilina, Larisa, Ruas, Vitoriano},
journal = {Applications of Mathematics},
keywords = {constant magnetic permeability; dielectric permittivity; explicit scheme; finite element; mass lumping; Maxwell-wave equation},
language = {eng},
number = {1},
pages = {75-98},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the Maxwell-wave equation coupling problem and its explicit finite-element solution},
url = {http://eudml.org/doc/299401},
volume = {68},
year = {2023},
}

TY - JOUR
AU - Beilina, Larisa
AU - Ruas, Vitoriano
TI - On the Maxwell-wave equation coupling problem and its explicit finite-element solution
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 1
SP - 75
EP - 98
AB - It is well known that in the case of constant dielectric permittivity and magnetic permeability, the electric field solving the Maxwell's equations is also a solution to the wave equation. The converse is also true under certain conditions. Here we study an intermediate situation in which the magnetic permeability is constant and a region with variable dielectric permittivity is surrounded by a region with a constant one, in which the unknown field satisfies the wave equation. In this case, such a field will be the solution of Maxwell's equation in the whole domain, as long as proper conditions are prescribed on its boundary. We show that an explicit finite-element scheme can be used to solve the resulting Maxwell-wave equation coupling problem in an inexpensive and reliable way. Optimal convergence in natural norms under reasonable assumptions holds for such a scheme, which is certified by numerical exemplification.
LA - eng
KW - constant magnetic permeability; dielectric permittivity; explicit scheme; finite element; mass lumping; Maxwell-wave equation
UR - http://eudml.org/doc/299401
ER -

References

top
  1. Ammari, H., Hamdache, K., 10.1016/S0022-247X(03)00415-3, J. Math. Anal. Appl. 286 (2003), 51-63. (2003) Zbl1039.35122MR2009617DOI10.1016/S0022-247X(03)00415-3
  2. Asadzadeh, M., Beilina, L., On stabilized P 1 finite element approximation for time harmonic Maxwell’s equations, Available at https://arxiv.org/abs/1906.02089v1 (2019), 25 pages. (2019) MR4141133
  3. Asadzadeh, M., Beilina, L., 10.1007/978-3-030-48634-1_4, Mathematical and Numerical Approaches for Multi-Wave Inverse Problems Springer Proceedings in Mathematics and Statistics 328. Springer, Cham (2020), 33-43. (2020) Zbl1446.65158MR4141133DOI10.1007/978-3-030-48634-1_4
  4. Assous, F., Degond, P., Heintze, E., Raviart, P. A., Segre, J., 10.1006/jcph.1993.1214, J. Comput. Phys. 109 (1993), 222-237 9999DOI99999 10.1006/jcph.1993.1214 . (1993) Zbl0795.65087MR1253460DOI10.1006/jcph.1993.1214
  5. Badia, S., Codina, R., 10.1137/110835360, SIAM J. Numer. Anal. 50 (2012), 398-417. (2012) Zbl1247.78034MR2914268DOI10.1137/110835360
  6. Beilina, L., 10.2478/s11533-013-0202-3, Cent. Eur. J. Math. 11 (2013), 702-733. (2013) Zbl1267.78044MR3015394DOI10.2478/s11533-013-0202-3
  7. Beilina, L., WavES (Wave Equations Solutions), Available at https://waves24.com/. 
  8. Beilina, L., Cristofol, M., Niinimäki, K., 10.3934/ipi.2015.9.1, Inverse Probl. Imaging 9 (2015), 1-25. (2015) Zbl1308.35296MR3305884DOI10.3934/ipi.2015.9.1
  9. Beilina, L., Grote, M. J., Adaptive hybrid finite element/difference method for Maxwell's equations, TWMS J. Pure Appl. Math. 1 (2010), 176-197. (2010) Zbl1236.78028MR2766623
  10. Beilina, L., Ruas, V., An explicit P 1 finite-element scheme for Maxwell’s equations with constant permittivity in a boundary neighborhood, Available at https://arxiv.org/abs/1808.10720v4 (2020), 38 pages. (2020) 
  11. Beilina, L., Ruas, V., 10.1007/978-3-030-48634-1_7, Mathematical and Numerical Approaches for Multi-Wave Inverse Problems Springer Proceedings in Mathematics & Statistics 328. Springer, Cham (2020), 91-103. (2020) Zbl07240119MR4141136DOI10.1007/978-3-030-48634-1_7
  12. Beilina, L., Thành, N. T., Klibanov, M. V., Malmberg, J. B., 10.1016/j.cam.2014.11.055, J. Comput. Appl. Math. 289 (2015), 371-391. (2015) Zbl1332.78020MR3350783DOI10.1016/j.cam.2014.11.055
  13. Bossavit, A., Computational Electromagnetism: Variational Formulations, Complementary, Edge Elements, Electromagnetism, Vol. 2 Academic Press, New York (1998). (1998) Zbl0945.78001MR1488417
  14. Brezzi, F., Fortin, M., 10.1007/978-1-4612-3172-1, Springer Series in Computational Mathematics 15. Springer, New York (1991). (1991) Zbl0788.73002MR1115205DOI10.1007/978-1-4612-3172-1
  15. Araujo, J. H. Carneiro de, Gomes, P. D., Ruas, V., 10.1016/j.cam.2010.03.025, J. Comput. Appl. Math. 234 (2010), 2562-2577. (2010) Zbl1425.76025MR2645211DOI10.1016/j.cam.2010.03.025
  16. Chen, C., Wahl, W. von., Das Rand-Anfangswertproblem für quasilineare Wellengleichungen in Sobolevräumen niedriger Ordnung, J. Reine Angew. Math. 337 (1982), 77-112 German 9999DOI99999 10.1515/crll.1982.337.77 . (1982) Zbl0486.35053MR0676043
  17. Ciarlet, P. G., The Finite Element Method for Elliptic Problems, Studies in Mathematics and Its Applications 4. North-Holland, Amsterdam (1978). (1978) Zbl0383.65058MR0520174
  18. P. Ciarlet, Jr., 10.1016/j.cma.2004.05.021, Comput. Methods Appl. Mech. Eng. 194 (2005), 559-586. (2005) Zbl1063.78018MR2105182DOI10.1016/j.cma.2004.05.021
  19. P. Ciarlet, Jr., E. Jamelot, 10.1016/j.jcp.2007.05.029, J. Comput. Phys. 226 (2007), 1122-1135. (2007) Zbl1128.78002MR2356870DOI10.1016/j.jcp.2007.05.029
  20. Cohen, G., Monk, P., 10.1002/(SICI)1098-2426(199801)14:1<63::AID-NUM4>3.0.CO;2-J, Numer. Methods Partial Differ. Equations 14 (1998), 63-88. (1998) Zbl0891.65130MR1601785DOI10.1002/(SICI)1098-2426(199801)14:1<63::AID-NUM4>3.0.CO;2-J
  21. Costabel, M., Dauge, M., 10.1007/s002110100388, Numer. Math. 93 (2002), 239-277. (2002) Zbl1019.78009MR1941397DOI10.1007/s002110100388
  22. Elmkies, A., Joly, P., 10.1016/S0764-4442(99)80415-7, C. R. Acad. Sci., Paris, Sér. I 324 (1997), 1287-1293 French. (1997) Zbl0877.65081MR1456303DOI10.1016/S0764-4442(99)80415-7
  23. Girault, V., Raviart, P.-A., 10.1007/978-3-642-61623-5, Springer Series in Computational Mathematics 5. Springer, Berlin (1986). (1986) Zbl0585.65077MR0851383DOI10.1007/978-3-642-61623-5
  24. Jamelot, E., Résolution des équations de Maxwell avec des éléments finis de Galerkin continus: Thèse doctorale, L'École Polytechnique, Paris (2005), French. (2005) Zbl1185.65006
  25. Joly, P., 10.1007/978-3-642-55483-4_6, Topics in Computational Wave Propagation: Direct and Inverse Problems Lecture Notes in Computational Science and Engineering 31. Springer, Berlin (2003), 201-264. (2003) Zbl1049.78028MR2032871DOI10.1007/978-3-642-55483-4_6
  26. Křížek, M., Neittaanmäki, P., Finite Element Approximation of Variational Problems and Applications, Pitman Monographs and Surveys in Pure and Applied Mathematics 50. Longman, Harlow (1990). (1990) Zbl0708.65106MR1066462
  27. Malmerg, J. B., 10.1007/978-3-319-12499-5_3, Inverse Problems and Applications Springer Proceedings in Mathematics & Statistics 120. Springer, Cham (2015), 43-53. (2015) Zbl1319.78014MR3343199DOI10.1007/978-3-319-12499-5_3
  28. Malmberg, J. B., Efficient Adaptive Algorithms for an Electromagnetic Coefficient Inverse Problem: Doctoral Thesis, University of Gothenburg, Gothenburg (2017). (2017) 
  29. Malmberg, J. B., Beilina, L., 10.1063/1.4992549, AIP Conf. Proc. 1863 (2017), Article ID 370002. (2017) DOI10.1063/1.4992549
  30. Malmberg, J. B., Beilina, L., 10.18576/amis/120101, Appl. Math. Inf. Sci. 12 (2018), 1-19. (2018) MR3747879DOI10.18576/amis/120101
  31. Monk, P., 10.1093/acprof:oso/9780198508885.001.0001, Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2003). (2003) Zbl1024.78009MR2059447DOI10.1093/acprof:oso/9780198508885.001.0001
  32. Nedelec, J.-C., 10.1007/BF01396415, Numer. Math. 35 (1980), 315-341. (1980) Zbl0419.65069MR0592160DOI10.1007/BF01396415
  33. Patsakos, G., 10.1119/1.11745, Am. J. Phys. 47 (1979), 698-699. (1979) DOI10.1119/1.11745
  34. Thành, N. T., Beilina, L., Klibanov, M. V., Fiddy, M. A., 10.1137/130924962, SIAM J. Sci. Comput. 36 (2014), B273--B293. (2014) Zbl1410.78018MR3199422DOI10.1137/130924962
  35. Thành, N. T., Beilina, L., Klibanov, M. V., Fiddy, M. A., 10.1137/140972469, SIAM J. Imaging Sci. 8 (2015), 757-786. (2015) Zbl1432.35259MR3327354DOI10.1137/140972469
  36. Wang, L., On Korn's inequality, J. Comput. Math. 21 (2003), 321-324. (2003) Zbl1151.74311MR1978636
  37. Zuo, L., Hou, Y., 10.1002/num.21933, Numer. Methods Partial Differ. Equations 31 (2015), 1009-1030. (2015) Zbl1329.76194MR3343597DOI10.1002/num.21933

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.