An LMI-based convex fault tolerant control of nonlinear descriptor systems via unknown input observers

Alberto Ortiz; Daniel Quintana; Victor Estrada-Manzo; Miguel Bernal

Kybernetika (2024)

  • Issue: 4, page 492-512
  • ISSN: 0023-5954

Abstract

top
This paper proposes a fault tolerant control scheme for nonlinear systems in descriptor form. The approach is based on the design of an unknown input observer in order to estimate the missing state variables as well as actuator faults, such design is carried out once a proper estimation error system is obtained via a recent factorization method; then, the estimated signals are employed in the control law in order to drive the states asymptotically to the origin despite actuator faults. The designing conditions are given in terms of linear matrix inequalities. Numerical as well as physical systems are used to illustrate the advantages of the proposal.

How to cite

top

Ortiz, Alberto, et al. "An LMI-based convex fault tolerant control of nonlinear descriptor systems via unknown input observers." Kybernetika (2024): 492-512. <http://eudml.org/doc/299416>.

@article{Ortiz2024,
abstract = {This paper proposes a fault tolerant control scheme for nonlinear systems in descriptor form. The approach is based on the design of an unknown input observer in order to estimate the missing state variables as well as actuator faults, such design is carried out once a proper estimation error system is obtained via a recent factorization method; then, the estimated signals are employed in the control law in order to drive the states asymptotically to the origin despite actuator faults. The designing conditions are given in terms of linear matrix inequalities. Numerical as well as physical systems are used to illustrate the advantages of the proposal.},
author = {Ortiz, Alberto, Quintana, Daniel, Estrada-Manzo, Victor, Bernal, Miguel},
journal = {Kybernetika},
keywords = {Takagi–Sugeno model; descriptor system; fault tolerant control; linear matrix inequality; Lyapunov method; unknown input observer},
language = {eng},
number = {4},
pages = {492-512},
publisher = {Institute of Information Theory and Automation AS CR},
title = {An LMI-based convex fault tolerant control of nonlinear descriptor systems via unknown input observers},
url = {http://eudml.org/doc/299416},
year = {2024},
}

TY - JOUR
AU - Ortiz, Alberto
AU - Quintana, Daniel
AU - Estrada-Manzo, Victor
AU - Bernal, Miguel
TI - An LMI-based convex fault tolerant control of nonlinear descriptor systems via unknown input observers
JO - Kybernetika
PY - 2024
PB - Institute of Information Theory and Automation AS CR
IS - 4
SP - 492
EP - 512
AB - This paper proposes a fault tolerant control scheme for nonlinear systems in descriptor form. The approach is based on the design of an unknown input observer in order to estimate the missing state variables as well as actuator faults, such design is carried out once a proper estimation error system is obtained via a recent factorization method; then, the estimated signals are employed in the control law in order to drive the states asymptotically to the origin despite actuator faults. The designing conditions are given in terms of linear matrix inequalities. Numerical as well as physical systems are used to illustrate the advantages of the proposal.
LA - eng
KW - Takagi–Sugeno model; descriptor system; fault tolerant control; linear matrix inequality; Lyapunov method; unknown input observer
UR - http://eudml.org/doc/299416
ER -

References

top
  1. Aouaouda, S., Bouarar, T., Bouhali, O., , J. Franklin Inst. 351 (2014), 9, 4514-4537. MR3248448DOI
  2. Bedioui, N., Houimli, R., Besbes, M., , Int. J. Systems Sci. 50 (2019), 6, 1290-1302. MR3952805DOI
  3. Bernal, M., Sala, A., Lendek, Z., Guerra, T. M., Analysis and synthesis of nonlinear control systems., Springer, 2022. 
  4. Bessa, I., Puig, V., Palhares, R. M., , J. Franklin Inst. 357 (2020), 8, 4592-4623. MR4096222DOI
  5. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M., Schröder, J., Diagnosis and Fault-tolerant Control, volume 2., Springer, 2006. MR3495879
  6. Boyd, S., Ghaoui, L. E., Feron, E., Belakrishnan, V., Linear Matrix Inequalities in System and Control Theory, volume 15., SIAM: Studies In Applied Mathematics, Philadelphia 1994. MR1284712
  7. Chen, L., Edwards, Ch., Alwi, H., Sato, M., Nateghi, S., Shtessel, Y., , Int. J. Robust Nonlinear Control 33 (2023), 15, 9084-9108. MR4645844DOI
  8. Edwards, C., Spurgeon, S. K., Patton, R. J., , Automatica 36 (2000), 4, 541-553. MR1828900DOI
  9. Estrada-Manzo, V., Lendek, Zs, Guerra, T. M., Unknown input estimation for nonlinear descriptor systems via LMIs and Takagi-Sugeno models., In: 2015 54th IEEE Conference on Decision and Control (CDC), IEEE, 2015, pp. 6349-6354. MR3310825
  10. Estrada-Manzo, V., Lendek, Z., Guerra, T. M., Pudlo, P., , IEEE Trans. Fuzzy Systems 23 (2015), 5, 1608-1621. MR3310825DOI
  11. Farhat, A., Koenig, D., PI robust fault detection observer for a class of uncertain switched systems using LMIs., In: 9th IFAC Symposium on Fault Detection, Supervision andSafety for Technical, Paris 2015, pp. 125-130. 
  12. Ltd, Feedback instruments, Sussex, East, K., U., Digital Pendulum Control Experiments 33-936S, 2015. 
  13. Frank, P. M., , Automatica 26 (1990), 3, :459-474. DOI
  14. Gahinet, P., Nemirovski, A., Laub, A. J., Chilali, M., LMI Control Toolbox., Math Works, Natick 1995. 
  15. Gao, Z., Cecati, C., Ding, S. X., 10.1109/TIE.2015.2417501, IEEE Trans. Industr. Electron. 62 (2015), 6, 3757-3767. DOI10.1109/TIE.2015.2417501
  16. Guerra, T.-M., Bernal, M., Kruszewski, A., Afroun, M., A way to improve results for the stabilization of continuous-time fuzzy descriptor models., In: 46th IEEE Conference on Decision and Control, IEEE 2007, pp. 5960-5964. MR2394401
  17. Guerra, T.-M., Estrada-Manzo, V., Lendek, Zs., , Automatica 52 (2015), 154-159. MR3310825DOI
  18. Guerra, T. M., Márquez, R., Kruszewski, A., Bernal, M., , IEEE Trans. Fuzzy Systems 26 (2018), 3, 1498-1509. DOI
  19. Guzman, J, López-Estrada, F.-R., Estrada-Manzo, V., Valencia-Palomo, G., , Int. J. Systems Sci. 52 (2021), 9, 1938-1951. MR4280762DOI
  20. Ichalal, D., Mammar, S., , IEEE Trans. Indust. Electron. 62 (2015), 9, 5870-5880. DOI
  21. Ichalal, D., Marx, B., Ragot, J., Maquin, D., 10.2478/v10006-012-0015-8, Int. J. Appl. Math. Computer Sci. 22 (2012), 1, 197-210. MR2953662DOI10.2478/v10006-012-0015-8
  22. Ichalal, D., Marx, B., Ragot, J., Maquin, D., Simultaneous state and unknown inputs estimation with PI and PMI observers for Takagi Sugeno model with unmeasurable premise variables., In: 17th Mediterranean Conference on Control and Automation 2009, pp. 353-358. 
  23. Ichalal, D., Marx, B., Ragot, J., Maquin, D., , J. Franklin Inst. 351 (2014), 7, 3651-3676. MR3214936DOI
  24. Isermann, R., Fault-diagnosis Applications: Model-Based Condition Monitoring: Actuators, Drives, Machinery, Plants, Sensors, and Fault-Tolerant Systems., Springer Science and Business Media, 2011. MR3186363
  25. Jiang, B., Zhang, K., Shi, P., , IEEE Trans. Fuzzy Syst. 19 (2010), 2, 291-304. DOI
  26. Jiang, G. P., Wang, S. P., Song, W. Z., , Electronics Lett. 36 (2000), 13, 1168-1169. MR1675763DOI
  27. Khalil, H. K., Praly, L., , Int. J. Robust Nonlinear Control 24 (2014), 6, 993-1015. MR3181173DOI
  28. Koenig, D., , IEEE Trans. Automat. control 50 (2005), 2, 212-217. MR2116426DOI
  29. Lendek, Z., Guerra, T. M., Babuška, R., On non-PDC local observers for TS fuzzy systems., In: IEEE International Conference on Fuzzy Systems (FUZZ), 2010, pp. 1-7. 
  30. Lendek, Z., Guerra, T. M, Babuška, R., De-Schutter, B., Stability Analysis and Nonlinear Observer Design Using Takagi-Sugeno Fuzzy Models., Springer-Verlag, Netherlands 2010. 
  31. Li, X., Zhu, F., Chakrabarty, A., Zak, S. H., , IEEE Trans. Fuzzy Systems 24 (2016), 6, 1679-1689. DOI
  32. Li, Y., Sun, K., Tong, S., , IEEE Trans. Cybernet. 49 (2018), 2, 649-661. DOI
  33. Liu, Z., Liu, J., He, W., , Automatica 98 (2018), 42-50. MR3866918DOI
  34. López-Estrada, F. R., Astorga-Zaragoza, C. M., Theilliol, D., Ponsart, J. Ch., Valencia-Palomo, G., Torres, L., , Int. J. Systems Sci. 48 (2017), 16, 3419-3430. MR3732973DOI
  35. López-Estrada, F. R., Santos-Estudillo, O., Valencia-Palomo, G., Gómez-Peñate, S., Hernandez-Gutiérrez, C., Robust qLPV tracking fault-tolerant control of a 3 DOF mechanical crane., Math. Comput. Appl. 25 (2020), 3, 48. MR4179272
  36. Marx, B., Ichalal, D., Ragot, J., Maquin, D., Mammar, S., , Automatica 100 (2019), 67-74. MR3880693DOI
  37. Marx, B., Koenig, D., Ragot, J., , IET Control Theory Appl. 1 (2007), 5, 1487-1495. MR2350837DOI
  38. Oh, S., Khalil, H. K., , Automatica 33 (1997), 10, 1845-1856. MR1481844DOI
  39. Ohtake, H., Tanaka, K., Wang, H. O., Fuzzy modeling via sector nonlinearity concept., In: Proc. Joint 9th IFSA World Congress and 20th NAFIPS International Conference 1 (2001), pp. 127-132. 
  40. Orjuela, R., Ichalal, D., Marx, B., Maquin, D., Ragot, J., Polytopic models for observer and fault-tolerant control designs., In: New Trends in Observer-Based Control, Elsevier 2019, pp. 295-335. 
  41. Orjuela, R., Marx, B., Ragot, J., Maquin, D., , IET Control Theory Appl. 3 (2009), 7, 877-890. MR2537968DOI
  42. Pertew, A. M., Marquez, H. J., Zhao, Q., , Automatica 43 (2007), 8, 1464-1469. MR2320532DOI
  43. Quintana, D., Estrada-Manzo, V., Bernal, M., , Fuzzy Sets Systems 416 (2021), :125-140. MR4258759DOI
  44. Quintana, D., Estrada-Manzo, V., Bernal, M., , IEEE Latin America Trans. 17 (2019), 07, 1096-1101. DOI
  45. Rodrigues, M., Hamdi, H., Braiek, N. B., Theilliol, D., , J. Franklin Inst. 351 (2014), 6, 3104-3125. MR3201022DOI
  46. Rotondo, D., Witczak, M., Puig, V., Nejjari, F., Pazera, M., , Int. J. Systems Sci. 47 (2016), 14, 3409-3424. MR3486707DOI
  47. Sami, M., Patton, R. J., , Int. J. Control Automat. Systems 11 (2013), 6, 1149-1161. DOI
  48. Scherer, C., Linear Matrix Inequalities in Control Theory., Delf University, Delf 2004. 
  49. Tan, Ch. P., Edwards, Ch., , Automatica 38 (2002), 10, 1815-1821. MR2134023DOI
  50. Tanaka, H., Sugie, T., General framework and BMI formulae for simultaneous design of structure and control systems., In: Proc. 36th Conference on Decision and Control (CDC), San Diego 1997, pp. 773-778. 
  51. Tanaka, K., Wang, H. O., Fuzzy Control Systems Design and Analysis: A linear matrix inequality approach., John Wiley and Sons, New York 2001. 
  52. Tuan, H. D., Apkarian, P., Narikiyo, T., Yamamoto, Y., , IEEE Trans. Fuzzy Systems 9 (2001), 2, 324-332. DOI
  53. Wang, J. L., Yang, G. H., Liu, J., 10.1016/j.automatica.2007.02.019, Automatica 43 (2007), 9, 1656-1665. MR2327079DOI10.1016/j.automatica.2007.02.019
  54. Wen, S., Chen, M. Z. Q., Zeng, Z., Huang, T., Li, Ch., , IEEE Trans. Systems Man Cybernet.: Systems 47 (2017), 8, 2268-2278. DOI
  55. Xie, X., Yue, D., Ma, T, Zhu, X., , IEEE Trans. Cybernet. 44 (2014), 12, 2784-2791. DOI
  56. Xiong, Y., Saif, M., , Automatica 39 (2003), 8, 1389-1398. MR2141683DOI
  57. Zemouche, A., Boutayeb, M., , Automatica 49 (2013), 2, 585-591. MR3004728DOI
  58. Zemouche, A., Zhang, F., Mazenc, F., Rajamani, R., , IEEE Trans. Automat. Control 64 (2018), 8, 3194-3209. MR3992861DOI
  59. Zhang, X., Polycarpou, M. M., Parisini, T., , IEEE Trans. Automat. Control 47 (2002), 4, 576-593. MR1893516DOI
  60. Y.Zhang, Jiang, J., , Ann. Rev. Control 32 (2008), 2, 229-252. DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.