Nonlinear fourth order problems with asymptotically linear nonlinearities
Abir Amor Ben Ali; Makkia Dammak
Mathematica Bohemica (2024)
- Volume: 149, Issue: 2, page 209-223
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topAmor Ben Ali, Abir, and Dammak, Makkia. "Nonlinear fourth order problems with asymptotically linear nonlinearities." Mathematica Bohemica 149.2 (2024): 209-223. <http://eudml.org/doc/299420>.
@article{AmorBenAli2024,
abstract = {We investigate some nonlinear elliptic problems of the form \[ \Delta ^\{2\}v + \sigma (x) v= h(x,v)\quad \mbox\{in\}\ \Omega ,\quad v=\Delta v=0 \quad \mbox\{on\}\ \partial \Omega , \qquad \mathrm \{(\{\rm P\})\}\]
where $\Omega $ is a regular bounded domain in $\mathbb \{R\}^\{N\}$, $N\ge 2$, $\sigma (x)$ a positive function in $L^\{\infty \}(\Omega )$, and the nonlinearity $h(x,t)$ is indefinite. We prove the existence of solutions to the problem (P) when the function $h(x,t)$ is asymptotically linear at infinity by using variational method but without the Ambrosetti-Rabinowitz condition. Also, we consider the case when the nonlinearities are superlinear and subcritical.},
author = {Amor Ben Ali, Abir, Dammak, Makkia},
journal = {Mathematica Bohemica},
keywords = {asymptotically linear; mountain pass theorem; biharmonic equation; Cerami sequence},
language = {eng},
number = {2},
pages = {209-223},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Nonlinear fourth order problems with asymptotically linear nonlinearities},
url = {http://eudml.org/doc/299420},
volume = {149},
year = {2024},
}
TY - JOUR
AU - Amor Ben Ali, Abir
AU - Dammak, Makkia
TI - Nonlinear fourth order problems with asymptotically linear nonlinearities
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 2
SP - 209
EP - 223
AB - We investigate some nonlinear elliptic problems of the form \[ \Delta ^{2}v + \sigma (x) v= h(x,v)\quad \mbox{in}\ \Omega ,\quad v=\Delta v=0 \quad \mbox{on}\ \partial \Omega , \qquad \mathrm {({\rm P})}\]
where $\Omega $ is a regular bounded domain in $\mathbb {R}^{N}$, $N\ge 2$, $\sigma (x)$ a positive function in $L^{\infty }(\Omega )$, and the nonlinearity $h(x,t)$ is indefinite. We prove the existence of solutions to the problem (P) when the function $h(x,t)$ is asymptotically linear at infinity by using variational method but without the Ambrosetti-Rabinowitz condition. Also, we consider the case when the nonlinearities are superlinear and subcritical.
LA - eng
KW - asymptotically linear; mountain pass theorem; biharmonic equation; Cerami sequence
UR - http://eudml.org/doc/299420
ER -
References
top- Abid, I., Dammak, M., Douchich, I., Stable solutions and bifurcation problem for asymptotically linear Helmholtz equations, Nonlinear Funct. Anal. Appl. 21 (2016), 15-31. (2016) Zbl1353.35130
- Abid, I., Jleli, M., Trabelsi, N., 10.1142/s0219530508001134, Anal. Appl., Singap. 6 (2008), 213-227. (2008) Zbl1160.35470MR2429357DOI10.1142/s0219530508001134
- Alnaser, L. A., Dammak, M., Biharmonic problem with indefinite asymptotically linear nonlinearity, Int. J. Math. Comput. Sci. 16 (2021), 1355-1370. (2021) Zbl1473.35176MR4294409
- Ambrosetti, A., Rabinowitz, P. H., 10.1016/0022-1236(73)90051-7, J. Funct. Anal. 14 (1973), 349-381. (1973) Zbl0273.49063MR0370183DOI10.1016/0022-1236(73)90051-7
- Brezis, H., 10.1007/978-0-387-70914-7, Universitext. Springer, New York (2011). (2011) Zbl1220.46002MR2759829DOI10.1007/978-0-387-70914-7
- Cerami, G., An existence criterion for the critical points on unbounded manifolds, Ist. Lombardo Accad. Sci. Lett., Rend., Sez. A 112 (1978), 332-336 Italian. (1978) Zbl0436.58006MR0581298
- Chen, S., Santos, C. A., Yang, M., Zhou, J., 10.1515/anona-2021-0215, Adv. Nonlinear Anal. 11 (2022), 684-701. (2022) Zbl1486.35034MR4344369DOI10.1515/anona-2021-0215
- Costa, D. G., Magalhães, C. A., 10.1016/0362-546x(94)90135-x, Nonlinear Anal., Theory Methods Appl. 23 (1994), 1401-1412. (1994) Zbl0820.35059MR1306679DOI10.1016/0362-546x(94)90135-x
- Costa, D. G., Miyagaki, O. H., 10.1006/jmaa.1995.1264, J. Math. Anal. Appl. 193 (1995), 737-755. (1995) Zbl0856.35040MR1341038DOI10.1006/jmaa.1995.1264
- D'Ambrosio, L., Mitidieri, E., 10.1515/anona-2021-0217, Adv. Nonlinear Anal. 11 (2022), 785-829. (2022) Zbl1485.35016MR4379602DOI10.1515/anona-2021-0217
- Dammak, M., Jaidane, R., Jerbi, C., Positive solutions for an asymptotically linear biharmonic problems, Nonlinear Funct. Anal. Appl. 22 (2017), 59-78. (2017) Zbl1368.35053
- El-Abed, A., Ali, A. A. B., Dammak, M., 10.2298/FIL2202629E, Filomat 36 (2022), 629-639. (2022) MR4394295DOI10.2298/FIL2202629E
- Jeanjean, L., 10.1017/s0308210500013147, Proc. R. Soc. Edinb., Sect. A, Math. 129 (1999), 787-809. (1999) Zbl0935.35044MR1718530DOI10.1017/s0308210500013147
- Lian, W., Rădulescu, V. D., Xu, R., Yang, Y., Zhao, N., 10.1515/acv-2019-0039, Adv. Calc. Var. 14 (2021), 589-611. (2021) Zbl1476.35048MR4319045DOI10.1515/acv-2019-0039
- Liu, Y., Wang, Z., 10.1016/s0252-9602(07)60055-1, Acta Math. Sci., Ser. B, Engl. Ed. 27 (2007), 549-560. (2007) Zbl1150.35037MR2339395DOI10.1016/s0252-9602(07)60055-1
- Martel, Y., Uniqueness of weak extremal solutions of nonlinear elliptic problems, Houston J. Math. 23 (1997), 161-168. (1997) Zbl0884.35037MR1688823
- Mironescu, P., Rădulescu, V. D., A bifurcation problem associated to a convex, asymtotically linear function, C. R. Acad. Sci., Paris, Sér. I 316 (1993), 667-672. (1993) Zbl0799.35025MR1214413
- Mironescu, P., Rădulescu, V. D., 10.1016/0362-546x(94)00327-e, Nonlinear Anal., Theory Methods Appl. 26 (1996), 857-875. (1996) Zbl0842.35008MR1362758DOI10.1016/0362-546x(94)00327-e
- Papageorgiou, N. S., Rădulescu, V. D., Repovš, D. D., 10.1112/blms.12347, Bull. Lond. Math. Soc. 52 (2020), 546-560. (2020) Zbl1447.35131MR4171387DOI10.1112/blms.12347
- Rabinowitz, P. H., 10.1090/cbms/065, Regional Conference Series in Mathematics 65. AMS, Providence (1986). (1986) Zbl0609.58002MR0845785DOI10.1090/cbms/065
- Sâanouni, S., Trabelsi, N., 10.1016/s0252-9602(16)30102-3, Acta Math. Sci., Ser. B, Engl. Ed. 36 (2016), 1731-7146. (2016) Zbl1374.35051MR3548320DOI10.1016/s0252-9602(16)30102-3
- Sâanouni, S., Trabelsi, N., Bifurcation for elliptic forth-order problems with quasilinear source term, Electronic J. Differ. Equ. 92 (2016), Article ID 92, 16 pages. (2016) Zbl1342.35036MR3489976
- Schechter, M., 10.1007/bf02567993, Manuscr. Math. 86 (1995), 253-265. (1995) Zbl0839.35048MR1323791DOI10.1007/bf02567993
- Stuart, C. A., Zhou, H. S., 10.1002/(sici)1099-1476(19961125)19:17<1397::aid-mma833>3.0.co;2-b, Math. Methods Appl. Sci. 19 (1996), 1397-1407. (1996) Zbl0862.35123MR1414401DOI10.1002/(sici)1099-1476(19961125)19:17<1397::aid-mma833>3.0.co;2-b
- Stuart, C. A., Zhou, H. S., 10.1080/03605309908821481, Commun. Partial Differ. Equations 24 (1999), 1731-1758. (1999) Zbl0935.35043MR1708107DOI10.1080/03605309908821481
- Zahed, H., Existence investigation of a fourth order semi-linear weighted problem, Int. J. Math. Comput. Sci. 16 (2021), 687-704. (2021) Zbl1455.35106MR4195463
- Zahed, H., Alnaser, L. A., 10.3844/jmssp.2021.13.21, J. Math. Stat. 17 (2021), 13-21. (2021) DOI10.3844/jmssp.2021.13.21
- Zhou, H. S., 10.1007/s101140100147, Acta Math. Sin., Engl. Ser. 18 (2002), 27-36. (2002) Zbl1018.35020MR1894835DOI10.1007/s101140100147
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.