Nonlinear fourth order problems with asymptotically linear nonlinearities

Abir Amor Ben Ali; Makkia Dammak

Mathematica Bohemica (2024)

  • Volume: 149, Issue: 2, page 209-223
  • ISSN: 0862-7959

Abstract

top
We investigate some nonlinear elliptic problems of the form Δ 2 v + σ ( x ) v = h ( x , v ) in Ω , v = Δ v = 0 on Ω , ( P ) where Ω is a regular bounded domain in N , N 2 , σ ( x ) a positive function in L ( Ω ) , and the nonlinearity h ( x , t ) is indefinite. We prove the existence of solutions to the problem (P) when the function h ( x , t ) is asymptotically linear at infinity by using variational method but without the Ambrosetti-Rabinowitz condition. Also, we consider the case when the nonlinearities are superlinear and subcritical.

How to cite

top

Amor Ben Ali, Abir, and Dammak, Makkia. "Nonlinear fourth order problems with asymptotically linear nonlinearities." Mathematica Bohemica 149.2 (2024): 209-223. <http://eudml.org/doc/299420>.

@article{AmorBenAli2024,
abstract = {We investigate some nonlinear elliptic problems of the form \[ \Delta ^\{2\}v + \sigma (x) v= h(x,v)\quad \mbox\{in\}\ \Omega ,\quad v=\Delta v=0 \quad \mbox\{on\}\ \partial \Omega , \qquad \mathrm \{(\{\rm P\})\}\] where $\Omega $ is a regular bounded domain in $\mathbb \{R\}^\{N\}$, $N\ge 2$, $\sigma (x)$ a positive function in $L^\{\infty \}(\Omega )$, and the nonlinearity $h(x,t)$ is indefinite. We prove the existence of solutions to the problem (P) when the function $h(x,t)$ is asymptotically linear at infinity by using variational method but without the Ambrosetti-Rabinowitz condition. Also, we consider the case when the nonlinearities are superlinear and subcritical.},
author = {Amor Ben Ali, Abir, Dammak, Makkia},
journal = {Mathematica Bohemica},
keywords = {asymptotically linear; mountain pass theorem; biharmonic equation; Cerami sequence},
language = {eng},
number = {2},
pages = {209-223},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Nonlinear fourth order problems with asymptotically linear nonlinearities},
url = {http://eudml.org/doc/299420},
volume = {149},
year = {2024},
}

TY - JOUR
AU - Amor Ben Ali, Abir
AU - Dammak, Makkia
TI - Nonlinear fourth order problems with asymptotically linear nonlinearities
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 2
SP - 209
EP - 223
AB - We investigate some nonlinear elliptic problems of the form \[ \Delta ^{2}v + \sigma (x) v= h(x,v)\quad \mbox{in}\ \Omega ,\quad v=\Delta v=0 \quad \mbox{on}\ \partial \Omega , \qquad \mathrm {({\rm P})}\] where $\Omega $ is a regular bounded domain in $\mathbb {R}^{N}$, $N\ge 2$, $\sigma (x)$ a positive function in $L^{\infty }(\Omega )$, and the nonlinearity $h(x,t)$ is indefinite. We prove the existence of solutions to the problem (P) when the function $h(x,t)$ is asymptotically linear at infinity by using variational method but without the Ambrosetti-Rabinowitz condition. Also, we consider the case when the nonlinearities are superlinear and subcritical.
LA - eng
KW - asymptotically linear; mountain pass theorem; biharmonic equation; Cerami sequence
UR - http://eudml.org/doc/299420
ER -

References

top
  1. Abid, I., Dammak, M., Douchich, I., Stable solutions and bifurcation problem for asymptotically linear Helmholtz equations, Nonlinear Funct. Anal. Appl. 21 (2016), 15-31. (2016) Zbl1353.35130
  2. Abid, I., Jleli, M., Trabelsi, N., 10.1142/s0219530508001134, Anal. Appl., Singap. 6 (2008), 213-227. (2008) Zbl1160.35470MR2429357DOI10.1142/s0219530508001134
  3. Alnaser, L. A., Dammak, M., Biharmonic problem with indefinite asymptotically linear nonlinearity, Int. J. Math. Comput. Sci. 16 (2021), 1355-1370. (2021) Zbl1473.35176MR4294409
  4. Ambrosetti, A., Rabinowitz, P. H., 10.1016/0022-1236(73)90051-7, J. Funct. Anal. 14 (1973), 349-381. (1973) Zbl0273.49063MR0370183DOI10.1016/0022-1236(73)90051-7
  5. Brezis, H., 10.1007/978-0-387-70914-7, Universitext. Springer, New York (2011). (2011) Zbl1220.46002MR2759829DOI10.1007/978-0-387-70914-7
  6. Cerami, G., An existence criterion for the critical points on unbounded manifolds, Ist. Lombardo Accad. Sci. Lett., Rend., Sez. A 112 (1978), 332-336 Italian. (1978) Zbl0436.58006MR0581298
  7. Chen, S., Santos, C. A., Yang, M., Zhou, J., 10.1515/anona-2021-0215, Adv. Nonlinear Anal. 11 (2022), 684-701. (2022) Zbl1486.35034MR4344369DOI10.1515/anona-2021-0215
  8. Costa, D. G., Magalhães, C. A., 10.1016/0362-546x(94)90135-x, Nonlinear Anal., Theory Methods Appl. 23 (1994), 1401-1412. (1994) Zbl0820.35059MR1306679DOI10.1016/0362-546x(94)90135-x
  9. Costa, D. G., Miyagaki, O. H., 10.1006/jmaa.1995.1264, J. Math. Anal. Appl. 193 (1995), 737-755. (1995) Zbl0856.35040MR1341038DOI10.1006/jmaa.1995.1264
  10. D'Ambrosio, L., Mitidieri, E., 10.1515/anona-2021-0217, Adv. Nonlinear Anal. 11 (2022), 785-829. (2022) Zbl1485.35016MR4379602DOI10.1515/anona-2021-0217
  11. Dammak, M., Jaidane, R., Jerbi, C., Positive solutions for an asymptotically linear biharmonic problems, Nonlinear Funct. Anal. Appl. 22 (2017), 59-78. (2017) Zbl1368.35053
  12. El-Abed, A., Ali, A. A. B., Dammak, M., 10.2298/FIL2202629E, Filomat 36 (2022), 629-639. (2022) MR4394295DOI10.2298/FIL2202629E
  13. Jeanjean, L., 10.1017/s0308210500013147, Proc. R. Soc. Edinb., Sect. A, Math. 129 (1999), 787-809. (1999) Zbl0935.35044MR1718530DOI10.1017/s0308210500013147
  14. Lian, W., Rădulescu, V. D., Xu, R., Yang, Y., Zhao, N., 10.1515/acv-2019-0039, Adv. Calc. Var. 14 (2021), 589-611. (2021) Zbl1476.35048MR4319045DOI10.1515/acv-2019-0039
  15. Liu, Y., Wang, Z., 10.1016/s0252-9602(07)60055-1, Acta Math. Sci., Ser. B, Engl. Ed. 27 (2007), 549-560. (2007) Zbl1150.35037MR2339395DOI10.1016/s0252-9602(07)60055-1
  16. Martel, Y., Uniqueness of weak extremal solutions of nonlinear elliptic problems, Houston J. Math. 23 (1997), 161-168. (1997) Zbl0884.35037MR1688823
  17. Mironescu, P., Rădulescu, V. D., A bifurcation problem associated to a convex, asymtotically linear function, C. R. Acad. Sci., Paris, Sér. I 316 (1993), 667-672. (1993) Zbl0799.35025MR1214413
  18. Mironescu, P., Rădulescu, V. D., 10.1016/0362-546x(94)00327-e, Nonlinear Anal., Theory Methods Appl. 26 (1996), 857-875. (1996) Zbl0842.35008MR1362758DOI10.1016/0362-546x(94)00327-e
  19. Papageorgiou, N. S., Rădulescu, V. D., Repovš, D. D., 10.1112/blms.12347, Bull. Lond. Math. Soc. 52 (2020), 546-560. (2020) Zbl1447.35131MR4171387DOI10.1112/blms.12347
  20. Rabinowitz, P. H., 10.1090/cbms/065, Regional Conference Series in Mathematics 65. AMS, Providence (1986). (1986) Zbl0609.58002MR0845785DOI10.1090/cbms/065
  21. Sâanouni, S., Trabelsi, N., 10.1016/s0252-9602(16)30102-3, Acta Math. Sci., Ser. B, Engl. Ed. 36 (2016), 1731-7146. (2016) Zbl1374.35051MR3548320DOI10.1016/s0252-9602(16)30102-3
  22. Sâanouni, S., Trabelsi, N., Bifurcation for elliptic forth-order problems with quasilinear source term, Electronic J. Differ. Equ. 92 (2016), Article ID 92, 16 pages. (2016) Zbl1342.35036MR3489976
  23. Schechter, M., 10.1007/bf02567993, Manuscr. Math. 86 (1995), 253-265. (1995) Zbl0839.35048MR1323791DOI10.1007/bf02567993
  24. Stuart, C. A., Zhou, H. S., 10.1002/(sici)1099-1476(19961125)19:17<1397::aid-mma833>3.0.co;2-b, Math. Methods Appl. Sci. 19 (1996), 1397-1407. (1996) Zbl0862.35123MR1414401DOI10.1002/(sici)1099-1476(19961125)19:17<1397::aid-mma833>3.0.co;2-b
  25. Stuart, C. A., Zhou, H. S., 10.1080/03605309908821481, Commun. Partial Differ. Equations 24 (1999), 1731-1758. (1999) Zbl0935.35043MR1708107DOI10.1080/03605309908821481
  26. Zahed, H., Existence investigation of a fourth order semi-linear weighted problem, Int. J. Math. Comput. Sci. 16 (2021), 687-704. (2021) Zbl1455.35106MR4195463
  27. Zahed, H., Alnaser, L. A., 10.3844/jmssp.2021.13.21, J. Math. Stat. 17 (2021), 13-21. (2021) DOI10.3844/jmssp.2021.13.21
  28. Zhou, H. S., 10.1007/s101140100147, Acta Math. Sin., Engl. Ser. 18 (2002), 27-36. (2002) Zbl1018.35020MR1894835DOI10.1007/s101140100147

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.