Displaying similar documents to “Nonlinear fourth order problems with asymptotically linear nonlinearities”

Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation

Jacques Giacomoni, Ian Schindler, Peter Takáč (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We investigate the following quasilinear and singular problem, t o 2 . 7 c m - Δ p u = λ u δ + u q in Ω ; u | Ω = 0 , u > 0 in Ω , t o 2 . 7 c m (P) where Ω is an open bounded domain with smooth boundary, 1 < p < , p - 1 < q p * - 1 , λ > 0 , and 0 < δ < 1 . As usual, p * = N p N - p if 1 < p < N , p * ( p , ) is arbitrarily large if p = N , and p * = if p > N . We employ variational methods in order to show the existence of at least two distinct (positive) solutions of problem (P) in W 0 1 , p ( Ω ) . While following an approach due to Ambrosetti-Brezis-Cerami, we need to prove two new results of separate interest: a strong comparison principle...

On behavior of solutions to a chemotaxis system with a nonlinear sensitivity function

Senba, Takasi, Fujie, Kentarou

Similarity:

In this paper, we consider solutions to the following chemotaxis system with general sensitivity τ u t = Δ u - · ( u χ ( v ) ) in Ω × ( 0 , ) , η v t = Δ v - v + u in Ω × ( 0 , ) , u ν = u ν = 0 on Ω × ( 0 , ) . Here, τ and η are positive constants, χ is a smooth function on ( 0 , ) satisfying χ ' ( · ) > 0 and Ω is a bounded domain of 𝐑 n ( n 2 ). It is well known that the chemotaxis system with direct sensitivity ( χ ( v ) = χ 0 v , χ 0 > 0 ) has blowup solutions in the case where n 2 . On the other hand, in the case where χ ( v ) = χ 0 log v with 0 < χ 0 1 , any solution to the system exists globally in time and is bounded. We present a sufficient condition for the boundedness...

Positive solutions for concave-convex elliptic problems involving p ( x ) -Laplacian

Makkia Dammak, Abir Amor Ben Ali, Said Taarabti (2022)

Mathematica Bohemica

Similarity:

We study the existence and nonexistence of positive solutions of the nonlinear equation - Δ p ( x ) u = λ k ( x ) u q ± h ( x ) u r in Ω , u = 0 on Ω where Ω N , N 2 , is a regular bounded open domain in N and the p ( x ) -Laplacian Δ p ( x ) u : = div ( | u | p ( x ) - 2 u ) is introduced for a continuous function p ( x ) > 1 defined on Ω . The positive parameter λ induces the bifurcation phenomena. The study of the equation (Q) needs generalized Lebesgue and Sobolev spaces. In this paper, under suitable assumptions, we show that some variational methods still work. We use them to prove the existence of positive...

Existence of renormalized solutions for some degenerate and non-coercive elliptic equations

Youssef Akdim, Mohammed Belayachi, Hassane Hjiaj (2023)

Mathematica Bohemica

Similarity:

This paper is devoted to the study of some nonlinear degenerated elliptic equations, whose prototype is given by t 2 - div ( b ( | u | ) | u | p - 2 u ) + d ( | u | ) | u | p = f - div ( c ( x ) | u | α ) in Ω , u = 0 on Ω , t where Ω is a bounded open set of N ( N 2 ) with 1 < p < N and f L 1 ( Ω ) , under some growth conditions on the function b ( · ) and d ( · ) , where c ( · ) is assumed to be in L N ( p - 1 ) ( Ω ) . We show the existence of renormalized solutions for this non-coercive elliptic equation, also, some regularity results will be concluded.

On k -Pell numbers which are sum of two Narayana’s cows numbers

Kouèssi Norbert Adédji, Mohamadou Bachabi, Alain Togbé (2025)

Mathematica Bohemica

Similarity:

For any positive integer k 2 , let ( P n ( k ) ) n 2 - k be the k -generalized Pell sequence which starts with 0 , , 0 , 1 ( k terms) with the linear recurrence P n ( k ) = 2 P n - 1 ( k ) + P n - 2 ( k ) + + P n - k ( k ) for n 2 . Let ( N n ) n 0 be Narayana’s sequence given by N 0 = N 1 = N 2 = 1 and N n + 3 = N n + 2 + N n . The purpose of this paper is to determine all k -Pell numbers which are sums of two Narayana’s numbers. More precisely, we study the Diophantine equation P p ( k ) = N n + N m in nonnegative integers k , p , n and m .

Existence theorems for nonlinear differential equations having trichotomy in Banach spaces

Adel Mahmoud Gomaa (2017)

Czechoslovak Mathematical Journal

Similarity:

We give existence theorems for weak and strong solutions with trichotomy of the nonlinear differential equation x ˙ ( t ) = ( t ) x ( t ) + f ( t , x ( t ) ) , t ( P ) where { ( t ) : t } is a family of linear operators from a Banach space E into itself and f : × E E . By L ( E ) we denote the space of linear operators from E into itself. Furthermore, for a < b and d > 0 , we let C ( [ - d , 0 ] , E ) be the Banach space of continuous functions from [ - d , 0 ] into E and f d : [ a , b ] × C ( [ - d , 0 ] , E ) E . Let ^ : [ a , b ] L ( E ) be a strongly measurable and Bochner integrable operator on [ a , b ] and for t [ a , b ] define τ t x ( s ) = x ( t + s ) for each s [ - d , 0 ] . We prove that, under certain...

On Kneser solutions of the n -th order nonlinear differential inclusions

Martina Pavlačková (2019)

Czechoslovak Mathematical Journal

Similarity:

The paper deals with the existence of a Kneser solution of the n -th order nonlinear differential inclusion x ( n ) ( t ) - A 1 ( t , x ( t ) , ... , x ( n - 1 ) ( t ) ) x ( n - 1 ) ( t ) - ... - A n ( t , x ( t ) , ... , x ( n - 1 ) ( t ) ) x ( t ) for a.a. t [ a , ) , where a ( 0 , ) , and A i : [ a , ) × n , i = 1 , ... , n , are upper-Carathéodory mappings. The derived result is finally illustrated by the third order Kneser problem.

On a sequence formed by iterating a divisor operator

Bellaouar Djamel, Boudaoud Abdelmadjid, Özen Özer (2019)

Czechoslovak Mathematical Journal

Similarity:

Let be the set of positive integers and let s . We denote by d s the arithmetic function given by d s ( n ) = ( d ( n ) ) s , where d ( n ) is the number of positive divisors of n . Moreover, for every , m we denote by δ s , , m ( n ) the sequence d s ( d s ( ... d s ( d s ( n ) + ) + ... ) + ) m -times = d s ( n ) for m = 1 , d s ( d s ( n ) + ) for m = 2 , d s ( d s ( d s ( n ) + ) + ) for m = 3 , We present classical and nonclassical notes on the sequence ( δ s , , m ( n ) ) m 1 , where , n , s are understood as parameters.

Sharp upper bounds for a singular perturbation problem related to micromagnetics

Arkady Poliakovsky (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We construct an upper bound for the following family of functionals { E ε } ε &gt; 0 , which arises in the study of micromagnetics: E ε ( u ) = Ω ε | u | 2 + 1 ε 2 | H u | 2 . Here Ω is a bounded domain in 2 , u H 1 ( Ω , S 1 ) (corresponding to the magnetization) and H u , the demagnetizing field created by u , is given by div ( u ˜ + H u ) = 0 in 2 , curl H u = 0 in 2 , where u ˜ is the extension of u by 0 in 2 Ω . Our upper bound coincides with the lower bound obtained by Rivière and Serfaty.

Subclasses of typically real functions determined by some modular inequalities

Leopold Koczan, Katarzyna Trąbka-Więcław (2010)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let T be the family of all typically real functions, i.e. functions that are analytic in the unit disk Δ : = { z : | z | < 1 } , normalized by f ( 0 ) = f ' ( 0 ) - 1 = 0 and such that Im z Im f ( z ) 0 for z Δ . Moreover, let us denote: T ( 2 ) : = { f T : f ( z ) = - f ( - z ) for z Δ } and T M , g : = { f T : f M g in Δ } , where M > 1 , g T S and S consists of all analytic functions, normalized and univalent in Δ .We investigate  classes in which the subordination is replaced with the majorization and the function g is typically real but does not necessarily univalent, i.e. classes { f T : f M g in Δ } , where M > 1 , g T , which we denote...

Bubbling on boundary submanifolds for the Lin–Ni–Takagi problem at higher critical exponents

Manuel del Pino, Fethi Mahmudi, Monica Musso (2014)

Journal of the European Mathematical Society

Similarity:

Let Ω be a bounded domain in n with smooth boundary Ω . We consider the equation d 2 Δ u - u + u n - k + 2 n - k - 2 = 0 in Ω , under zero Neumann boundary conditions, where Ω is open, smooth and bounded and d is a small positive parameter. We assume that there is a k -dimensional closed, embedded minimal submanifold K of Ω , which is non-degenerate, and certain weighted average of sectional curvatures of Ω is positive along K . Then we prove the existence of a sequence d = d j 0 and a positive solution u d such that d 2 | u d | 2 S δ K as d 0 in the sense of measures,...

Further generalized versions of Ilmanen’s lemma on insertion of C 1 , ω or C loc 1 , ω functions

Václav Kryštof (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The author proved in 2018 that if G is an open subset of a Hilbert space, f 1 , f 2 : G continuous functions and ω a nontrivial modulus such that f 1 f 2 , f 1 is locally semiconvex with modulus ω and f 2 is locally semiconcave with modulus ω , then there exists f C loc 1 , ω ( G ) such that f 1 f f 2 . This is a generalization of Ilmanen’s lemma (which deals with linear modulus and functions on an open subset of n ). Here we extend the mentioned result from Hilbert spaces to some superreflexive spaces, in particular to L p spaces, p [ 2 , ) . We...

2-Cohomology of semi-simple simply connected group-schemes over curves defined over p -adic fields

Jean-Claude Douai (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let X be a proper, smooth, geometrically connected curve over a p -adic field k . Lichtenbaum proved that there exists a perfect duality: Br ( X ) × Pic ( X ) / between the Brauer and the Picard group of X , from which he deduced the existence of an injection of Br ( X ) in P X Br ( k P ) where P X and k P denotes the residual field of the point P . The aim of this paper is to prove that if G = G ˜ is an X e t - scheme of semi-simple simply connected groups (s.s.s.c groups), then we can deduce from Lichtenbaum’s results...

Correct solvability of a general differential equation of the first order in the space L p ( )

Nina A. Chernyavskaya, Leonid A. Shuster (2015)

Archivum Mathematicum

Similarity:

We consider the equation - r ( x ) y ' ( x ) + q ( x ) y ( x ) = f ( x ) , x where f L p ( ) , p [ 1 , ] ( L ( ) : = C ( ) ) and 0 < r C ( ) , 0 q L 1 ( ) . We obtain minimal requirements to the functions r and q , in addition to (), under which equation () is correctly solvable in L p ( ) , p [ 1 , ] .