Discretization of prime counting functions, convexity and the Riemann hypothesis

Emre Alkan

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 1, page 15-48
  • ISSN: 0011-4642

Abstract

top
We study tails of prime counting functions. Our approach leads to representations with a main term and an error term for the asymptotic size of each tail. It is further shown that the main term is of a specific shape and can be written discretely as a sum involving probabilities of certain events belonging to a perturbed binomial distribution. The limitations of the error term in our representation give us equivalent conditions for various forms of the Riemann hypothesis, for classical type zero-free regions in the case of the Riemann zeta function and the size of semigroups of integers in the sense of Beurling. Inspired by the works of Panaitopol, asymptotic companions pertaining to the magnitude of specific prime counting functions are obtained in terms of harmonic numbers, hyperharmonic numbers and the number of indecomposable permutations. By introducing the notion of asymptotic convexity and fusing it with a nice generalization of an inequality of Ramanujan due to Hassani, we arrive at a curious asymptotic inequality for the classical prime counting function at any convex combination of its arguments and further show that quotients arising from prime counting functions of progressions furnish examples of asymptotically convex, but not convex functions.

How to cite

top

Alkan, Emre. "Discretization of prime counting functions, convexity and the Riemann hypothesis." Czechoslovak Mathematical Journal 73.1 (2023): 15-48. <http://eudml.org/doc/299422>.

@article{Alkan2023,
abstract = {We study tails of prime counting functions. Our approach leads to representations with a main term and an error term for the asymptotic size of each tail. It is further shown that the main term is of a specific shape and can be written discretely as a sum involving probabilities of certain events belonging to a perturbed binomial distribution. The limitations of the error term in our representation give us equivalent conditions for various forms of the Riemann hypothesis, for classical type zero-free regions in the case of the Riemann zeta function and the size of semigroups of integers in the sense of Beurling. Inspired by the works of Panaitopol, asymptotic companions pertaining to the magnitude of specific prime counting functions are obtained in terms of harmonic numbers, hyperharmonic numbers and the number of indecomposable permutations. By introducing the notion of asymptotic convexity and fusing it with a nice generalization of an inequality of Ramanujan due to Hassani, we arrive at a curious asymptotic inequality for the classical prime counting function at any convex combination of its arguments and further show that quotients arising from prime counting functions of progressions furnish examples of asymptotically convex, but not convex functions.},
author = {Alkan, Emre},
journal = {Czechoslovak Mathematical Journal},
keywords = {prime counting function; discretization; Riemann hypothesis; harmonic number; indecomposable permutation; asymptotic convexity},
language = {eng},
number = {1},
pages = {15-48},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Discretization of prime counting functions, convexity and the Riemann hypothesis},
url = {http://eudml.org/doc/299422},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Alkan, Emre
TI - Discretization of prime counting functions, convexity and the Riemann hypothesis
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 1
SP - 15
EP - 48
AB - We study tails of prime counting functions. Our approach leads to representations with a main term and an error term for the asymptotic size of each tail. It is further shown that the main term is of a specific shape and can be written discretely as a sum involving probabilities of certain events belonging to a perturbed binomial distribution. The limitations of the error term in our representation give us equivalent conditions for various forms of the Riemann hypothesis, for classical type zero-free regions in the case of the Riemann zeta function and the size of semigroups of integers in the sense of Beurling. Inspired by the works of Panaitopol, asymptotic companions pertaining to the magnitude of specific prime counting functions are obtained in terms of harmonic numbers, hyperharmonic numbers and the number of indecomposable permutations. By introducing the notion of asymptotic convexity and fusing it with a nice generalization of an inequality of Ramanujan due to Hassani, we arrive at a curious asymptotic inequality for the classical prime counting function at any convex combination of its arguments and further show that quotients arising from prime counting functions of progressions furnish examples of asymptotically convex, but not convex functions.
LA - eng
KW - prime counting function; discretization; Riemann hypothesis; harmonic number; indecomposable permutation; asymptotic convexity
UR - http://eudml.org/doc/299422
ER -

References

top
  1. Alkan, E., 10.1007/s00605-010-0211-2, Monatsh. Math. 163 (2011), 249-280. (2011) Zbl1278.11081MR2805873DOI10.1007/s00605-010-0211-2
  2. Alkan, E., 10.1007/s11139-012-9424-4, Ramanujan J. 29 (2012), 385-408. (2012) Zbl1297.11092MR2994108DOI10.1007/s11139-012-9424-4
  3. Alkan, E., 10.1142/S1793042112501187, Int. J. Number Theory 8 (2012), 2069-2092. (2012) Zbl1323.11062MR2978857DOI10.1142/S1793042112501187
  4. Alkan, E., 10.1142/S1793042120500281, Int. J. Number Theory 16 (2020), 547-577. (2020) Zbl1437.11128MR4079395DOI10.1142/S1793042120500281
  5. Alkan, E., 10.1007/s40993-020-00211-3, Res. Number Theory 6 (2020), Article ID 36, 29 pages. (2020) Zbl07304531MR4150473DOI10.1007/s40993-020-00211-3
  6. Alkan, E., 10.1016/j.jnt.2021.01.004, J. Number Theory 225 (2021), 90-124. (2021) Zbl07355818MR4231545DOI10.1016/j.jnt.2021.01.004
  7. Alkan, E., Zaharescu, A., 10.1016/j.jnt.2004.10.003, J. Number Theory 113 (2005), 226-243. (2005) Zbl1138.11339MR2153277DOI10.1016/j.jnt.2004.10.003
  8. Benjamin, A. T., Gaebler, D., Gaebler, R., A combinatorial approach to hyperharmonic numbers, Integers 3 (2003), Article ID A15, 9 pages. (2003) Zbl1128.11309MR2036481
  9. Berndt, B. C., 10.1007/978-1-4612-0879-2, Springer, New York (1994). (1994) Zbl0785.11001MR1261634DOI10.1007/978-1-4612-0879-2
  10. Cobeli, C., Panaitopol, L., Vâjâitu, M., Zaharescu, A., Some asymptotic formulas involving primes in arithmetic progressions, Comment. Math. Univ. St. Pauli 53 (2004), 23-35. (2004) Zbl1065.11074MR2084357
  11. Comtet, L., Sur les coefficients de l’inverse de la série formelle n ! t n , C. R. Acad. Sci., Paris, Sér. A 275 (1972), 569-572 French. (1972) Zbl0246.05003MR0302457
  12. Comtet, L., 10.1007/978-94-010-2196-8, D. Reidel, Dordrecht (1974). (1974) Zbl0283.05001MR0460128DOI10.1007/978-94-010-2196-8
  13. Conway, J. H., Guy, R. K., 10.1007/978-1-4612-4072-3, Springer, Berlin (1996). (1996) Zbl0866.00001MR1411676DOI10.1007/978-1-4612-4072-3
  14. Davenport, H., 10.1007/978-1-4757-5927-3, Graduate Texts in Mathematics 74. Springer, New York (2000). (2000) Zbl1002.11001MR1790423DOI10.1007/978-1-4757-5927-3
  15. Camargo, A. P. de, Martin, P. A., 10.1007/s00574-021-00267-4, (to appear) in Bull. Braz. Math. Soc. (N.S.). MR4418781DOI10.1007/s00574-021-00267-4
  16. Ford, K., 10.1112/S0024611502013655, Proc. Lond. Math. Soc., III. Ser. 85 (2002), 565-633. (2002) Zbl1034.11044MR1936814DOI10.1112/S0024611502013655
  17. Grosswald, É., Sur l’ordre de grandeur des différences ψ ( x ) - x et π ( x ) - l i x , C. R. Acad. Sci., Paris 260 (1965), 3813-3816 French. (1965) Zbl0127.02005MR0179146
  18. Hassani, M., Approximation of π ( x ) by Ψ ( x ) , JIPAM, J. Inequal. Pure Appl. Math. 7 (2006), Articles ID 7, 7 pages. (2006) Zbl1137.11009MR2217170
  19. Hassani, M., 10.1007/s11139-011-9362-6, Ramanujan J. 28 (2012), 435-442. (2012) Zbl1286.11010MR2950516DOI10.1007/s11139-011-9362-6
  20. Hassani, M., Generalizations of an inequality of Ramanujan concerning prime counting function, Appl. Math. E-Notes 13 (2013), 148-154. (2013) Zbl1286.11011MR3141823
  21. Hassani, M., 10.2478/cm-2021-0014, Commun. Math. 29 (2021), 473-482. (2021) Zbl07484381MR4355420DOI10.2478/cm-2021-0014
  22. Ingham, A. E., The Distribution of Prime Numbers, Cambridge Tracts in Mathematics and Mathematical Physics 30. Cambridge University Press, London (1932). (1932) Zbl0006.39701MR0184920
  23. King, A., 10.1016/j.disc.2006.01.005, Discrete Math. 306 (2006), 508-518. (2006) Zbl1086.05004MR2212519DOI10.1016/j.disc.2006.01.005
  24. Littlewood, J. E., Sur la distribution des nombres premiers, C. R. Acad. Sci., Paris 158 (1914), 1869-1872 French 9999JFM99999 45.0305.01. (1914) 
  25. Malliavin, P., 10.1007/BF02545789, Acta Math. 106 (1961), 281-298 French. (1961) Zbl0102.28204MR0142518DOI10.1007/BF02545789
  26. Mincu, G., Panaitopol, L., Properties of some functions connected to prime numbers, JIPAM, J. Inequal. Pure Appl. Math. 9 (2008), Article ID 12, 10 pages. (2008) Zbl1196.11124MR2391279
  27. Mititica, G., Panaitopol, L., 10.7153/mia-13-15, Math. Inequal. Appl. 13 (2010), 197-201. (2010) Zbl1214.11103MR2648241DOI10.7153/mia-13-15
  28. Panaitopol, L., 10.7153/mia-02-29, Math. Inequal. Appl. 2 (1999), 317-324. (1999) Zbl0932.11005MR1698377DOI10.7153/mia-02-29
  29. Panaitopol, L., A formula for π ( x ) applied to a result of Koninck-Ivić, Nieuw Arch. Wiskd. 5 (2000), 55-56. (2000) Zbl0982.11003MR1760776
  30. Panaitopol, L., 10.4064/aa-94-4-373-381, Acta Arith. 94 (2000), 373-381. (2000) Zbl0963.11050MR1779949DOI10.4064/aa-94-4-373-381
  31. Panaitopol, L., Asymptotic formulas involving π ( x ) , Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 44 (2001), 91-96. (2001) Zbl1047.11007MR2013429
  32. Panaitopol, L., Inequalities involving prime numbers, Math. Rep., Bucur 3(53) (2001), 251-256. (2001) Zbl1059.11007MR1929536
  33. Panaitopol, L., A special case of the Hardy-Littlewood conjecture, Math. Rep., Bucur 4(54) (2002), 265-268. (2002) Zbl1070.11044MR2067638
  34. Riemann, B., 10.1017/CBO9781139568050.008, Monatsberichte Königlichen Preußischen Akademie der Wissenschaften Berlin (1859), 671-680 German. (1859) DOI10.1017/CBO9781139568050.008
  35. Schmidt, E., 10.1007/BF01444344, Math. Ann. 57 (1903), 195-204 German 9999JFM99999 34.0230.02. (1903) MR1511206DOI10.1007/BF01444344
  36. Schoenfeld, L., 10.2307/2005976, Math. Comput. 30 (1976), 337-360. (1976) Zbl0326.10037MR0457374DOI10.2307/2005976
  37. Turán, P., 10.1007/BF02021308, Acta Math. Acad. Sci. Hung. 1 (1950), 155-166. (1950) Zbl0041.37102MR0049219DOI10.1007/BF02021308
  38. Walfisz, A., Weylsche Exponentialsummen in der neueren Zahlentheorie, Mathematische Forschungsberichte 15. VEB Deutscher Verlag der Wissenschaften, Berlin (1963), German. (1963) Zbl0146.06003MR0220685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.