Non-homogeneous directional equations: Slice solutions belonging to functions of bounded -index in the unit ball
Andriy Bandura; Tetyana Salo; Oleh Skaskiv
Mathematica Bohemica (2024)
- Volume: 149, Issue: 2, page 247-260
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBandura, Andriy, Salo, Tetyana, and Skaskiv, Oleh. "Non-homogeneous directional equations: Slice solutions belonging to functions of bounded $L$-index in the unit ball." Mathematica Bohemica 149.2 (2024): 247-260. <http://eudml.org/doc/299432>.
@article{Bandura2024,
abstract = {For a given direction $\{\bf b\}\in \mathbb \{C\}^n\setminus \lbrace \{\bf 0\}\rbrace $ we study non-homogeneous directional linear higher-order equations whose all coefficients belong to a class of joint continuous functions which are holomorphic on intersection of all directional slices with a unit ball. Conditions are established providing boundedness of $L$-index in the direction with a positive continuous function $L$ satisfying some behavior conditions in the unit ball. The provided conditions concern every solution belonging to the same class of functions as the coefficients of the equation. Our considerations use some estimates involving a directional logarithmic derivative and distribution of zeros on all directional slices in the unit ball.},
author = {Bandura, Andriy, Salo, Tetyana, Skaskiv, Oleh},
journal = {Mathematica Bohemica},
keywords = {bounded index; bounded $L$-index in direction; slice function; holomorphic function; directional differential equation; bounded $l$-index; directional derivative; unit ball},
language = {eng},
number = {2},
pages = {247-260},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Non-homogeneous directional equations: Slice solutions belonging to functions of bounded $L$-index in the unit ball},
url = {http://eudml.org/doc/299432},
volume = {149},
year = {2024},
}
TY - JOUR
AU - Bandura, Andriy
AU - Salo, Tetyana
AU - Skaskiv, Oleh
TI - Non-homogeneous directional equations: Slice solutions belonging to functions of bounded $L$-index in the unit ball
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 2
SP - 247
EP - 260
AB - For a given direction ${\bf b}\in \mathbb {C}^n\setminus \lbrace {\bf 0}\rbrace $ we study non-homogeneous directional linear higher-order equations whose all coefficients belong to a class of joint continuous functions which are holomorphic on intersection of all directional slices with a unit ball. Conditions are established providing boundedness of $L$-index in the direction with a positive continuous function $L$ satisfying some behavior conditions in the unit ball. The provided conditions concern every solution belonging to the same class of functions as the coefficients of the equation. Our considerations use some estimates involving a directional logarithmic derivative and distribution of zeros on all directional slices in the unit ball.
LA - eng
KW - bounded index; bounded $L$-index in direction; slice function; holomorphic function; directional differential equation; bounded $l$-index; directional derivative; unit ball
UR - http://eudml.org/doc/299432
ER -
References
top- Baksa, V., Bandura, A., Skaskiv, O., 10.1515/ms-2017-0420, Math. Slovaca 70 (2020), 1141-1152. (2020) Zbl1478.32004MR4156814DOI10.1515/ms-2017-0420
- Bandura, A., Martsinkiv, M., Skaskiv, O., 10.3390/axioms10010004, Axioms 10 (2021), Article ID 4, 15 pages. (2021) MR4409465DOI10.3390/axioms10010004
- Bandura, A. I., Salo, T. M., Skaskiv, O. B., 10.30970/ms.57.1.68-78, Mat. Stud. 57 (2022), 68-78. (2022) Zbl1487.32008MR4409465DOI10.30970/ms.57.1.68-78
- Bandura, A., Shegda, L., Skaskiv, O., Smolovyk, L., 10.12732/ijam.v34i4.13, Int. J. Appl. Math. 34 (2021), 775-793. (2021) MR4409465DOI10.12732/ijam.v34i4.13
- Bandura, A., Skaskiv, O., 10.12697/ACUTM.2018.22.18, Acta Comment. Univ. Tartu. Math. 22 (2018), 223-234. (2018) Zbl1422.32004MR3911033DOI10.12697/ACUTM.2018.22.18
- Bandura, A., Skaskiv, O., 10.15407/mag15.02.170, J. Math. Phys. Anal. Geom. 15 (2019), 170-191. (2019) Zbl1426.32001MR3968733DOI10.15407/mag15.02.170
- Bandura, A., Skaskiv, O., 10.1515/ms-2017-0292, Math. Slovaca 69 (2019), 1089-1098. (2019) Zbl1478.32003MR4017393DOI10.1515/ms-2017-0292
- Bandura, A., Skaskiv, O., 10.3390/axioms8030088, Axioms 8 (2019), Article ID 88, 12 pages. (2019) Zbl1432.32002DOI10.3390/axioms8030088
- Bandura, A., Skaskiv, O., 10.1007/s10958-019-04600-7, J. Math. Sci., New York 244 (2020), 1-21. (2020) Zbl1435.30138MR4445786DOI10.1007/s10958-019-04600-7
- Bandura, A., Skaskiv, O., Filevych, P., 10.17512/jamcm.2017.2.02, J. Appl. Math. Comput. Mech. 16 (2017), 17-28. (2017) MR3671887DOI10.17512/jamcm.2017.2.02
- Bandura, A., Skaskiv, O., Smolovyk, L., 10.1515/dema-2019-0043, Demonstr. Math. 52 (2019), 482-489. (2019) Zbl1436.32004MR4044563DOI10.1515/dema-2019-0043
- Bordulyak, M. T., A proof of Sheremeta’s conjecture concerning entire function of bounded -index, Mat. Stud. 12 (1999), 108-110. (1999) Zbl0974.30554MR1737836
- Bordulyak, M. T., Sheremeta, M. M., 10.1007/BF02595355, Ukr. Math. J. 48 (1996), 1322-1340. (1996) Zbl0932.30025MR1429603DOI10.1007/BF02595355
- Fricke, G. H., 10.1007/BF01429209, Math. Ann. 206 (1973), 215-223. (1973) Zbl0251.30026MR0325962DOI10.1007/BF01429209
- Fricke, G. H., 10.1007/BF02786809, J. Anal. Math. 28 (1975), 101-122. (1975) Zbl0316.30020DOI10.1007/BF02786809
- Hayman, W. K., 10.2140/pjm.1973.44.117, Pac. J. Math. 44 (1973), 117-137. (1973) Zbl0248.30026MR0316693DOI10.2140/pjm.1973.44.117
- Hural, I. M., 10.15330/ms.51.1.107-110, Mat. Stud. 51 (2019), 107-110. (2019) Zbl1425.32004MR3968758DOI10.15330/ms.51.1.107-110
- Kuzyk, A. D., Sheremeta, M. N., 10.1007/BF01647624, Math. Notes 39 (1986), 3-8. (1986) Zbl0603.30034MR0830838DOI10.1007/BF01647624
- Kuzyk, A. D., Sheremeta, M. N., Entire functions satisfying linear differential equations, Differ. Equations 26 (1990), 1268-1273. (1990) Zbl0732.34006MR1089741
- Lepson, B., Differential equations of infinite order, hyperdirichlet series and entire functions of bounded index, Entire Functions and Related Parts of Analysis Proceedings of Symposia in Pure Mathematics 11. AMS, Providence (1968), 298-307 9999MR99999 0237788 . (1968) Zbl0199.12902MR0237788
- MacDonnell, J. J., Some Convergence Theorems for Dirichlet-type Series Whose Coefficients Are Entire Functions of Bounded Index: Doctoral Dissertation, Catholic University of America, Washington (1957). (1957) MR2938858
- Nuray, F., Patterson, R. F., 10.4418/2015.70.2.14, Matematiche 70 (2015), 225-233. (2015) Zbl1342.32006MR3437188DOI10.4418/2015.70.2.14
- Nuray, F., Patterson, R. F., 10.15330/ms.49.1.67-74, Mat. Stud. 49 (2018), 67-74. (2018) Zbl1414.30031MR3841790DOI10.15330/ms.49.1.67-74
- Shah, S. M., 10.1090/S0002-9939-1968-0237789-2, Proc. Am. Math. Soc. 19 (1968), 1017-1022. (1968) Zbl0164.08601MR0237789DOI10.1090/S0002-9939-1968-0237789-2
- Shah, S. M., 10.1512/iumj.1969.18.18013, J. Math. Mech. 18 (1969), 131-136. (1969) Zbl0165.08502MR0227410DOI10.1512/iumj.1969.18.18013
- Shah, S. M., 10.1007/BFb0096833, Complex Analysis Lecture Notes in Mathematics 599. Springer, Berlin (1977), 117-145. (1977) Zbl0361.30007MR0457719DOI10.1007/BFb0096833
- Sheremeta, M. M., 10.1007/BF02378535, Ukr. Math. J. 48 (1996), 460-466. (1996) Zbl0932.30024MR1408662DOI10.1007/BF02378535
- Sheremeta, M., Analytic Functions of Bounded Index, Mathematical Studies Monograph Series 6. VNTL Publishers, Lviv (1999). (1999) Zbl0980.30020MR1751042
- Sheremeta, M. M., 10.15330/ms.47.2.207-210, Mat. Stud. 47 (2017), 207-210. (2017) Zbl1414.30036MR3733089DOI10.15330/ms.47.2.207-210
- Sheremeta, M. M., Bordulyak, M. T., Boundedness of the -index of Laguerre-Pólya entire functions, Ukr. Math. J. 55 (2003), 112-125 9999DOI99999 10.1023/A:1025076720052 . (2003) Zbl1038.30015MR2034907
- Strelitz, S., 10.1090/conm/025, Value Distribution Theory and Its Applications Contemporary Mathematics 25. AMS, Providence (1983), 171-214. (1983) Zbl0546.34004MR730048DOI10.1090/conm/025
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.