Non-homogeneous directional equations: Slice solutions belonging to functions of bounded L -index in the unit ball

Andriy Bandura; Tetyana Salo; Oleh Skaskiv

Mathematica Bohemica (2024)

  • Volume: 149, Issue: 2, page 247-260
  • ISSN: 0862-7959

Abstract

top
For a given direction 𝐛 n { 0 } we study non-homogeneous directional linear higher-order equations whose all coefficients belong to a class of joint continuous functions which are holomorphic on intersection of all directional slices with a unit ball. Conditions are established providing boundedness of L -index in the direction with a positive continuous function L satisfying some behavior conditions in the unit ball. The provided conditions concern every solution belonging to the same class of functions as the coefficients of the equation. Our considerations use some estimates involving a directional logarithmic derivative and distribution of zeros on all directional slices in the unit ball.

How to cite

top

Bandura, Andriy, Salo, Tetyana, and Skaskiv, Oleh. "Non-homogeneous directional equations: Slice solutions belonging to functions of bounded $L$-index in the unit ball." Mathematica Bohemica 149.2 (2024): 247-260. <http://eudml.org/doc/299432>.

@article{Bandura2024,
abstract = {For a given direction $\{\bf b\}\in \mathbb \{C\}^n\setminus \lbrace \{\bf 0\}\rbrace $ we study non-homogeneous directional linear higher-order equations whose all coefficients belong to a class of joint continuous functions which are holomorphic on intersection of all directional slices with a unit ball. Conditions are established providing boundedness of $L$-index in the direction with a positive continuous function $L$ satisfying some behavior conditions in the unit ball. The provided conditions concern every solution belonging to the same class of functions as the coefficients of the equation. Our considerations use some estimates involving a directional logarithmic derivative and distribution of zeros on all directional slices in the unit ball.},
author = {Bandura, Andriy, Salo, Tetyana, Skaskiv, Oleh},
journal = {Mathematica Bohemica},
keywords = {bounded index; bounded $L$-index in direction; slice function; holomorphic function; directional differential equation; bounded $l$-index; directional derivative; unit ball},
language = {eng},
number = {2},
pages = {247-260},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Non-homogeneous directional equations: Slice solutions belonging to functions of bounded $L$-index in the unit ball},
url = {http://eudml.org/doc/299432},
volume = {149},
year = {2024},
}

TY - JOUR
AU - Bandura, Andriy
AU - Salo, Tetyana
AU - Skaskiv, Oleh
TI - Non-homogeneous directional equations: Slice solutions belonging to functions of bounded $L$-index in the unit ball
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 2
SP - 247
EP - 260
AB - For a given direction ${\bf b}\in \mathbb {C}^n\setminus \lbrace {\bf 0}\rbrace $ we study non-homogeneous directional linear higher-order equations whose all coefficients belong to a class of joint continuous functions which are holomorphic on intersection of all directional slices with a unit ball. Conditions are established providing boundedness of $L$-index in the direction with a positive continuous function $L$ satisfying some behavior conditions in the unit ball. The provided conditions concern every solution belonging to the same class of functions as the coefficients of the equation. Our considerations use some estimates involving a directional logarithmic derivative and distribution of zeros on all directional slices in the unit ball.
LA - eng
KW - bounded index; bounded $L$-index in direction; slice function; holomorphic function; directional differential equation; bounded $l$-index; directional derivative; unit ball
UR - http://eudml.org/doc/299432
ER -

References

top
  1. Baksa, V., Bandura, A., Skaskiv, O., 10.1515/ms-2017-0420, Math. Slovaca 70 (2020), 1141-1152. (2020) Zbl1478.32004MR4156814DOI10.1515/ms-2017-0420
  2. Bandura, A., Martsinkiv, M., Skaskiv, O., 10.3390/axioms10010004, Axioms 10 (2021), Article ID 4, 15 pages. (2021) MR4409465DOI10.3390/axioms10010004
  3. Bandura, A. I., Salo, T. M., Skaskiv, O. B., 10.30970/ms.57.1.68-78, Mat. Stud. 57 (2022), 68-78. (2022) Zbl1487.32008MR4409465DOI10.30970/ms.57.1.68-78
  4. Bandura, A., Shegda, L., Skaskiv, O., Smolovyk, L., 10.12732/ijam.v34i4.13, Int. J. Appl. Math. 34 (2021), 775-793. (2021) MR4409465DOI10.12732/ijam.v34i4.13
  5. Bandura, A., Skaskiv, O., 10.12697/ACUTM.2018.22.18, Acta Comment. Univ. Tartu. Math. 22 (2018), 223-234. (2018) Zbl1422.32004MR3911033DOI10.12697/ACUTM.2018.22.18
  6. Bandura, A., Skaskiv, O., 10.15407/mag15.02.170, J. Math. Phys. Anal. Geom. 15 (2019), 170-191. (2019) Zbl1426.32001MR3968733DOI10.15407/mag15.02.170
  7. Bandura, A., Skaskiv, O., 10.1515/ms-2017-0292, Math. Slovaca 69 (2019), 1089-1098. (2019) Zbl1478.32003MR4017393DOI10.1515/ms-2017-0292
  8. Bandura, A., Skaskiv, O., 10.3390/axioms8030088, Axioms 8 (2019), Article ID 88, 12 pages. (2019) Zbl1432.32002DOI10.3390/axioms8030088
  9. Bandura, A., Skaskiv, O., 10.1007/s10958-019-04600-7, J. Math. Sci., New York 244 (2020), 1-21. (2020) Zbl1435.30138MR4445786DOI10.1007/s10958-019-04600-7
  10. Bandura, A., Skaskiv, O., Filevych, P., 10.17512/jamcm.2017.2.02, J. Appl. Math. Comput. Mech. 16 (2017), 17-28. (2017) MR3671887DOI10.17512/jamcm.2017.2.02
  11. Bandura, A., Skaskiv, O., Smolovyk, L., 10.1515/dema-2019-0043, Demonstr. Math. 52 (2019), 482-489. (2019) Zbl1436.32004MR4044563DOI10.1515/dema-2019-0043
  12. Bordulyak, M. T., A proof of Sheremeta’s conjecture concerning entire function of bounded l -index, Mat. Stud. 12 (1999), 108-110. (1999) Zbl0974.30554MR1737836
  13. Bordulyak, M. T., Sheremeta, M. M., 10.1007/BF02595355, Ukr. Math. J. 48 (1996), 1322-1340. (1996) Zbl0932.30025MR1429603DOI10.1007/BF02595355
  14. Fricke, G. H., 10.1007/BF01429209, Math. Ann. 206 (1973), 215-223. (1973) Zbl0251.30026MR0325962DOI10.1007/BF01429209
  15. Fricke, G. H., 10.1007/BF02786809, J. Anal. Math. 28 (1975), 101-122. (1975) Zbl0316.30020DOI10.1007/BF02786809
  16. Hayman, W. K., 10.2140/pjm.1973.44.117, Pac. J. Math. 44 (1973), 117-137. (1973) Zbl0248.30026MR0316693DOI10.2140/pjm.1973.44.117
  17. Hural, I. M., 10.15330/ms.51.1.107-110, Mat. Stud. 51 (2019), 107-110. (2019) Zbl1425.32004MR3968758DOI10.15330/ms.51.1.107-110
  18. Kuzyk, A. D., Sheremeta, M. N., 10.1007/BF01647624, Math. Notes 39 (1986), 3-8. (1986) Zbl0603.30034MR0830838DOI10.1007/BF01647624
  19. Kuzyk, A. D., Sheremeta, M. N., Entire functions satisfying linear differential equations, Differ. Equations 26 (1990), 1268-1273. (1990) Zbl0732.34006MR1089741
  20. Lepson, B., Differential equations of infinite order, hyperdirichlet series and entire functions of bounded index, Entire Functions and Related Parts of Analysis Proceedings of Symposia in Pure Mathematics 11. AMS, Providence (1968), 298-307 9999MR99999 0237788 . (1968) Zbl0199.12902MR0237788
  21. MacDonnell, J. J., Some Convergence Theorems for Dirichlet-type Series Whose Coefficients Are Entire Functions of Bounded Index: Doctoral Dissertation, Catholic University of America, Washington (1957). (1957) MR2938858
  22. Nuray, F., Patterson, R. F., 10.4418/2015.70.2.14, Matematiche 70 (2015), 225-233. (2015) Zbl1342.32006MR3437188DOI10.4418/2015.70.2.14
  23. Nuray, F., Patterson, R. F., 10.15330/ms.49.1.67-74, Mat. Stud. 49 (2018), 67-74. (2018) Zbl1414.30031MR3841790DOI10.15330/ms.49.1.67-74
  24. Shah, S. M., 10.1090/S0002-9939-1968-0237789-2, Proc. Am. Math. Soc. 19 (1968), 1017-1022. (1968) Zbl0164.08601MR0237789DOI10.1090/S0002-9939-1968-0237789-2
  25. Shah, S. M., 10.1512/iumj.1969.18.18013, J. Math. Mech. 18 (1969), 131-136. (1969) Zbl0165.08502MR0227410DOI10.1512/iumj.1969.18.18013
  26. Shah, S. M., 10.1007/BFb0096833, Complex Analysis Lecture Notes in Mathematics 599. Springer, Berlin (1977), 117-145. (1977) Zbl0361.30007MR0457719DOI10.1007/BFb0096833
  27. Sheremeta, M. M., 10.1007/BF02378535, Ukr. Math. J. 48 (1996), 460-466. (1996) Zbl0932.30024MR1408662DOI10.1007/BF02378535
  28. Sheremeta, M., Analytic Functions of Bounded Index, Mathematical Studies Monograph Series 6. VNTL Publishers, Lviv (1999). (1999) Zbl0980.30020MR1751042
  29. Sheremeta, M. M., 10.15330/ms.47.2.207-210, Mat. Stud. 47 (2017), 207-210. (2017) Zbl1414.30036MR3733089DOI10.15330/ms.47.2.207-210
  30. Sheremeta, M. M., Bordulyak, M. T., Boundedness of the l -index of Laguerre-Pólya entire functions, Ukr. Math. J. 55 (2003), 112-125 9999DOI99999 10.1023/A:1025076720052 . (2003) Zbl1038.30015MR2034907
  31. Strelitz, S., 10.1090/conm/025, Value Distribution Theory and Its Applications Contemporary Mathematics 25. AMS, Providence (1983), 171-214. (1983) Zbl0546.34004MR730048DOI10.1090/conm/025

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.