Complete solutions of a Lebesgue-Ramanujan-Nagell type equation
Priyanka Baruah; Anup Das; Azizul Hoque
Archivum Mathematicum (2024)
- Volume: 060, Issue: 3, page 135-144
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topBaruah, Priyanka, Das, Anup, and Hoque, Azizul. "Complete solutions of a Lebesgue-Ramanujan-Nagell type equation." Archivum Mathematicum 060.3 (2024): 135-144. <http://eudml.org/doc/299460>.
@article{Baruah2024,
abstract = {We consider the Lebesgue-Ramanujan-Nagell type equation $x^2+5^a13^b17^c=2^m y^n$, where $a,b,c, m\ge 0, n \ge 3$ and $x, y\ge 1$ are unknown integers with $\gcd (x,y)=1$. We determine all integer solutions to the above equation. The proof depends on the classical results of Bilu, Hanrot and Voutier on primitive divisors in Lehmer sequences, and finding all $S$-integral points on a class of elliptic curves.},
author = {Baruah, Priyanka, Das, Anup, Hoque, Azizul},
journal = {Archivum Mathematicum},
keywords = {Diophantine equation; Lehmer sequence; elliptic curve; quartic curve; S-integral points},
language = {eng},
number = {3},
pages = {135-144},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Complete solutions of a Lebesgue-Ramanujan-Nagell type equation},
url = {http://eudml.org/doc/299460},
volume = {060},
year = {2024},
}
TY - JOUR
AU - Baruah, Priyanka
AU - Das, Anup
AU - Hoque, Azizul
TI - Complete solutions of a Lebesgue-Ramanujan-Nagell type equation
JO - Archivum Mathematicum
PY - 2024
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 060
IS - 3
SP - 135
EP - 144
AB - We consider the Lebesgue-Ramanujan-Nagell type equation $x^2+5^a13^b17^c=2^m y^n$, where $a,b,c, m\ge 0, n \ge 3$ and $x, y\ge 1$ are unknown integers with $\gcd (x,y)=1$. We determine all integer solutions to the above equation. The proof depends on the classical results of Bilu, Hanrot and Voutier on primitive divisors in Lehmer sequences, and finding all $S$-integral points on a class of elliptic curves.
LA - eng
KW - Diophantine equation; Lehmer sequence; elliptic curve; quartic curve; S-integral points
UR - http://eudml.org/doc/299460
ER -
References
top- Abu Muriefah, F.S., Arif, S.A., The Diophantine equation , Indian J. Pure Appl. Math. 30 (3) (1999), 229–231. (1999) MR1686079
- Abu Muriefah, F.S., Luca, F., Siksek, S., Tengely, S., 10.1142/S1793042109002572, Int. J. Number Theory 5 (6) (2009), 1117–1128. (2009) MR2569748DOI10.1142/S1793042109002572
- Abu Muriefah, F.S., Luca, F., Togbé, A., 10.1017/S0017089507004028, Glasgow Math. J. 50 (1) (2008), 175–181. (2008) MR2381741DOI10.1017/S0017089507004028
- Alan, M., Zengin, U., 10.1007/s10998-020-00321-6, Period. Math. Hungar. 81 (2020), 284–291. (2020) MR4169906DOI10.1007/s10998-020-00321-6
- Arif, S.A., Al-Ali, A.S., 10.4064/aa103-4-4, Acta Arith. 103 (4) (2002), 343–346. (2002) MR1904929DOI10.4064/aa103-4-4
- Bhatter, S., Hoque, A., Sharma, R., 10.1007/s10474-018-00901-6, Acta Math. Hungar. 158 (2019), 17–26. (2019) MR3950195DOI10.1007/s10474-018-00901-6
- Bilu, Y., Hanrot, G., Voutier, P.M., Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte), J. Reine Angew. Math. 539 (2001), 75–122. (2001) Zbl0995.11010MR1863855
- Bosma, W., Cannon, J., Playoust, C., 10.1006/jsco.1996.0125, J. Symbolic Comput. 24 (3) (1997), 235–265. (1997) Zbl0898.68039MR1484478DOI10.1006/jsco.1996.0125
- Bugeaud, Y., 10.1007/s006050170046, Monatsh. Math. 132 (2001), 93–97. (2001) MR1838399DOI10.1007/s006050170046
- Chakraborty, K., Hoque, A., On the Diophantine equation , Results Math. 77 (1) (2022), 11 pp., article no. 18. (2022) MR4344843
- Chakraborty, K., Hoque, A., Sharma, R., 10.5486/PMD.2020.8752, Publ. Math. Debrecen 97 (3/4) (2020), 339–352. (2020) MR4194065DOI10.5486/PMD.2020.8752
- Chakraborty, K., Hoque, A., Sharma, R., 10.1216/rmj.2021.51.459, Rocky Mountain J. Math. 51 (2) (2021), 459–471. (2021) MR4278721DOI10.1216/rmj.2021.51.459
- Chakraborty, K., Hoque, A., Srinivas, K., 10.1007/s00025-021-01366-w, Results Math. 76 (2021), 12 pp., article no. 57. (2021) MR4228926DOI10.1007/s00025-021-01366-w
- Cohn, J.H.E., Square Fibonacci numbers, etc., Fibonacci Quart. 2 (2) (1964), 109–113. (1964) MR0161819
- Dabrowski, A., 10.4064/cm125-2-9, Colloq. Math. 125 (2) (2011), 245–253. (2011) MR2871317DOI10.4064/cm125-2-9
- Dabrowski, A., Günhan, N., Soydan, G., 10.1016/j.jnt.2019.12.020, J. Number Theory 215 (2020), 149–159. (2020) MR4125908DOI10.1016/j.jnt.2019.12.020
- Demirci, M., On the Diophantine equation , Filomat 31 (16) (2017), 5263–5269. (2017) MR3733500
- Gou, S., Wang, T.T., The Diophantine equation , Czechoslovak Math. J. 62 (2012), 645–654. (2012) MR2984625
- Hoque, A., 10.1007/s10998-023-00564-z, Period. Math. Hungar. (2023), https://doi.org/10.1007/s10998-023-00564-z. (2023) MR4751334DOI10.1007/s10998-023-00564-z
- Le, M., Soydan, G., A brief survey on the generalized Lebesgue-Ramanujan-Nagell equation, Surv. Math. Appl. 15 (2020), 473–523. (2020) MR4118124
- Lebesgue, V.A., Sur l’impossibilité, en nombres entiers, de l’équation , Nouvelles Annales des Math. 9 (1850), 178 pp. (1850)
- Ljunggren, W., 10.7146/math.scand.a-10781, Math. Scand. 18 (1966), 69–86. (1966) MR0204358DOI10.7146/math.scand.a-10781
- Luca, F., Togbé, A., On the equation , Colloq. Math. 116 (1) (2009), 139–146. (2009) MR2504836
- Pink, I., Rábai, Z., On the Diophantine equation , Commun. Math. 19 (2011), 1–9. (2011) MR2855388
- Tao, L., On the Diophantine equation , Ramanujan J. 19 (2009), 325–338. (2009) MR2529713
- Yuan, P., On the Diophantine equation , Indag. Math. (N.S.) 16 (2) (2005), 301–320. (2005) MR2319301
- Zhu, H., Le, M., Soydan, G., Togbé, A., On the exponential Diophantine equation , Period. Math. Hungar. 70 (2015), 233–247. (2015) MR3344003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.