Complete solutions of a Lebesgue-Ramanujan-Nagell type equation

Priyanka Baruah; Anup Das; Azizul Hoque

Archivum Mathematicum (2024)

  • Volume: 060, Issue: 3, page 135-144
  • ISSN: 0044-8753

Abstract

top
We consider the Lebesgue-Ramanujan-Nagell type equation x 2 + 5 a 13 b 17 c = 2 m y n , where a , b , c , m 0 , n 3 and x , y 1 are unknown integers with gcd ( x , y ) = 1 . We determine all integer solutions to the above equation. The proof depends on the classical results of Bilu, Hanrot and Voutier on primitive divisors in Lehmer sequences, and finding all S -integral points on a class of elliptic curves.

How to cite

top

Baruah, Priyanka, Das, Anup, and Hoque, Azizul. "Complete solutions of a Lebesgue-Ramanujan-Nagell type equation." Archivum Mathematicum 060.3 (2024): 135-144. <http://eudml.org/doc/299460>.

@article{Baruah2024,
abstract = {We consider the Lebesgue-Ramanujan-Nagell type equation $x^2+5^a13^b17^c=2^m y^n$, where $a,b,c, m\ge 0, n \ge 3$ and $x, y\ge 1$ are unknown integers with $\gcd (x,y)=1$. We determine all integer solutions to the above equation. The proof depends on the classical results of Bilu, Hanrot and Voutier on primitive divisors in Lehmer sequences, and finding all $S$-integral points on a class of elliptic curves.},
author = {Baruah, Priyanka, Das, Anup, Hoque, Azizul},
journal = {Archivum Mathematicum},
keywords = {Diophantine equation; Lehmer sequence; elliptic curve; quartic curve; S-integral points},
language = {eng},
number = {3},
pages = {135-144},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Complete solutions of a Lebesgue-Ramanujan-Nagell type equation},
url = {http://eudml.org/doc/299460},
volume = {060},
year = {2024},
}

TY - JOUR
AU - Baruah, Priyanka
AU - Das, Anup
AU - Hoque, Azizul
TI - Complete solutions of a Lebesgue-Ramanujan-Nagell type equation
JO - Archivum Mathematicum
PY - 2024
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 060
IS - 3
SP - 135
EP - 144
AB - We consider the Lebesgue-Ramanujan-Nagell type equation $x^2+5^a13^b17^c=2^m y^n$, where $a,b,c, m\ge 0, n \ge 3$ and $x, y\ge 1$ are unknown integers with $\gcd (x,y)=1$. We determine all integer solutions to the above equation. The proof depends on the classical results of Bilu, Hanrot and Voutier on primitive divisors in Lehmer sequences, and finding all $S$-integral points on a class of elliptic curves.
LA - eng
KW - Diophantine equation; Lehmer sequence; elliptic curve; quartic curve; S-integral points
UR - http://eudml.org/doc/299460
ER -

References

top
  1. Abu Muriefah, F.S., Arif, S.A., The Diophantine equation x 2 + 5 2 k + 1 = y n , Indian J. Pure Appl. Math. 30 (3) (1999), 229–231. (1999) MR1686079
  2. Abu Muriefah, F.S., Luca, F., Siksek, S., Tengely, S., 10.1142/S1793042109002572, Int. J. Number Theory 5 (6) (2009), 1117–1128. (2009) MR2569748DOI10.1142/S1793042109002572
  3. Abu Muriefah, F.S., Luca, F., Togbé, A., 10.1017/S0017089507004028, Glasgow Math. J. 50 (1) (2008), 175–181. (2008) MR2381741DOI10.1017/S0017089507004028
  4. Alan, M., Zengin, U., 10.1007/s10998-020-00321-6, Period. Math. Hungar. 81 (2020), 284–291. (2020) MR4169906DOI10.1007/s10998-020-00321-6
  5. Arif, S.A., Al-Ali, A.S., 10.4064/aa103-4-4, Acta Arith. 103 (4) (2002), 343–346. (2002) MR1904929DOI10.4064/aa103-4-4
  6. Bhatter, S., Hoque, A., Sharma, R., 10.1007/s10474-018-00901-6, Acta Math. Hungar. 158 (2019), 17–26. (2019) MR3950195DOI10.1007/s10474-018-00901-6
  7. Bilu, Y., Hanrot, G., Voutier, P.M., Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte), J. Reine Angew. Math. 539 (2001), 75–122. (2001) Zbl0995.11010MR1863855
  8. Bosma, W., Cannon, J., Playoust, C., 10.1006/jsco.1996.0125, J. Symbolic Comput. 24 (3) (1997), 235–265. (1997) Zbl0898.68039MR1484478DOI10.1006/jsco.1996.0125
  9. Bugeaud, Y., 10.1007/s006050170046, Monatsh. Math. 132 (2001), 93–97. (2001) MR1838399DOI10.1007/s006050170046
  10. Chakraborty, K., Hoque, A., On the Diophantine equation d x 2 + p 2 a q 2 b = 4 y p , Results Math. 77 (1) (2022), 11 pp., article no. 18. (2022) MR4344843
  11. Chakraborty, K., Hoque, A., Sharma, R., 10.5486/PMD.2020.8752, Publ. Math. Debrecen 97 (3/4) (2020), 339–352. (2020) MR4194065DOI10.5486/PMD.2020.8752
  12. Chakraborty, K., Hoque, A., Sharma, R., 10.1216/rmj.2021.51.459, Rocky Mountain J. Math. 51 (2) (2021), 459–471. (2021) MR4278721DOI10.1216/rmj.2021.51.459
  13. Chakraborty, K., Hoque, A., Srinivas, K., 10.1007/s00025-021-01366-w, Results Math. 76 (2021), 12 pp., article no. 57. (2021) MR4228926DOI10.1007/s00025-021-01366-w
  14. Cohn, J.H.E., Square Fibonacci numbers, etc., Fibonacci Quart. 2 (2) (1964), 109–113. (1964) MR0161819
  15. Dabrowski, A., 10.4064/cm125-2-9, Colloq. Math. 125 (2) (2011), 245–253. (2011) MR2871317DOI10.4064/cm125-2-9
  16. Dabrowski, A., Günhan, N., Soydan, G., 10.1016/j.jnt.2019.12.020, J. Number Theory 215 (2020), 149–159. (2020) MR4125908DOI10.1016/j.jnt.2019.12.020
  17. Demirci, M., On the Diophantine equation x 2 + 5 a p b = y n , Filomat 31 (16) (2017), 5263–5269. (2017) MR3733500
  18. Gou, S., Wang, T.T., The Diophantine equation x 2 + 2 a . 17 b = y n , Czechoslovak Math. J. 62 (2012), 645–654. (2012) MR2984625
  19. Hoque, A., 10.1007/s10998-023-00564-z, Period. Math. Hungar. (2023), https://doi.org/10.1007/s10998-023-00564-z. (2023) MR4751334DOI10.1007/s10998-023-00564-z
  20. Le, M., Soydan, G., A brief survey on the generalized Lebesgue-Ramanujan-Nagell equation, Surv. Math. Appl. 15 (2020), 473–523. (2020) MR4118124
  21. Lebesgue, V.A., Sur l’impossibilité, en nombres entiers, de l’équation x m = y 2 + 1 , Nouvelles Annales des Math. 9 (1850), 178 pp. (1850) 
  22. Ljunggren, W., 10.7146/math.scand.a-10781, Math. Scand. 18 (1966), 69–86. (1966) MR0204358DOI10.7146/math.scand.a-10781
  23. Luca, F., Togbé, A., On the equation x 2 + 2 α 13 β = y n , Colloq. Math. 116 (1) (2009), 139–146. (2009) MR2504836
  24. Pink, I., Rábai, Z., On the Diophantine equation x 2 + 5 k 17 l = y n , Commun. Math. 19 (2011), 1–9. (2011) MR2855388
  25. Tao, L., On the Diophantine equation x 2 + 5 m = y n , Ramanujan J. 19 (2009), 325–338. (2009) MR2529713
  26. Yuan, P., On the Diophantine equation a x 2 + b y 2 = c k n , Indag. Math. (N.S.) 16 (2) (2005), 301–320. (2005) MR2319301
  27. Zhu, H., Le, M., Soydan, G., Togbé, A., On the exponential Diophantine equation x + 2 a p b = y n , Period. Math. Hungar. 70 (2015), 233–247. (2015) MR3344003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.