The diophantine equation x 2 + 2 a · 17 b = y n

Su Gou; Tingting Wang

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 3, page 645-654
  • ISSN: 0011-4642

Abstract

top
Let , be the sets of all integers and positive integers, respectively. Let p be a fixed odd prime. Recently, there have been many papers concerned with solutions ( x , y , n , a , b ) of the equation x 2 + 2 a p b = y n , x , y , n , gcd ( x , y ) = 1 , n 3 , a , b , a 0 , b 0 . And all solutions of it have been determined for the cases p = 3 , p = 5 , p = 11 and p = 13 . In this paper, we mainly concentrate on the case p = 3 , and using certain recent results on exponential diophantine equations including the famous Catalan equation, all solutions ( x , y , n , a , b ) of the equation x 2 + 2 a · 17 b = y n , x , y , n , gcd ( x , y ) = 1 , n 3 , a , b , a 0 , b 0 , are determined.

How to cite

top

Gou, Su, and Wang, Tingting. "The diophantine equation $x^2+2^a\cdot 17^b=y^n$." Czechoslovak Mathematical Journal 62.3 (2012): 645-654. <http://eudml.org/doc/247237>.

@article{Gou2012,
abstract = {Let $\mathbb \{Z\}$, $ \mathbb \{N\}$ be the sets of all integers and positive integers, respectively. Let $p$ be a fixed odd prime. Recently, there have been many papers concerned with solutions $(x, y, n, a, b)$ of the equation $ x^2+2^ap^b=y^n$, $x, y, n\in \mathbb \{N\}$, $\gcd (x, y)=1$, $n\ge 3$, $a, b\in \mathbb \{Z\}$, $a\ge 0$, $b\ge 0. $ And all solutions of it have been determined for the cases $p=3$, $p=5$, $p=11$ and $p=13$. In this paper, we mainly concentrate on the case $p=3$, and using certain recent results on exponential diophantine equations including the famous Catalan equation, all solutions $(x, y, n, a, b)$ of the equation $x^2+2^a\cdot 17^b=y^n$, $x, y, n\in \mathbb \{N\}$, $\gcd (x, y)=1$, $n\ge 3$, $a, b\in \mathbb \{Z\}$, $ a\ge 0$, $ b\ge 0$, are determined.},
author = {Gou, Su, Wang, Tingting},
journal = {Czechoslovak Mathematical Journal},
keywords = {exponential diophantine equation; modular approach; arithmetic properties of Lucas numbers; exponential diophantine equation; modular approach; Lucas number},
language = {eng},
number = {3},
pages = {645-654},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The diophantine equation $x^2+2^a\cdot 17^b=y^n$},
url = {http://eudml.org/doc/247237},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Gou, Su
AU - Wang, Tingting
TI - The diophantine equation $x^2+2^a\cdot 17^b=y^n$
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 3
SP - 645
EP - 654
AB - Let $\mathbb {Z}$, $ \mathbb {N}$ be the sets of all integers and positive integers, respectively. Let $p$ be a fixed odd prime. Recently, there have been many papers concerned with solutions $(x, y, n, a, b)$ of the equation $ x^2+2^ap^b=y^n$, $x, y, n\in \mathbb {N}$, $\gcd (x, y)=1$, $n\ge 3$, $a, b\in \mathbb {Z}$, $a\ge 0$, $b\ge 0. $ And all solutions of it have been determined for the cases $p=3$, $p=5$, $p=11$ and $p=13$. In this paper, we mainly concentrate on the case $p=3$, and using certain recent results on exponential diophantine equations including the famous Catalan equation, all solutions $(x, y, n, a, b)$ of the equation $x^2+2^a\cdot 17^b=y^n$, $x, y, n\in \mathbb {N}$, $\gcd (x, y)=1$, $n\ge 3$, $a, b\in \mathbb {Z}$, $ a\ge 0$, $ b\ge 0$, are determined.
LA - eng
KW - exponential diophantine equation; modular approach; arithmetic properties of Lucas numbers; exponential diophantine equation; modular approach; Lucas number
UR - http://eudml.org/doc/247237
ER -

References

top
  1. Abouzaid, M., 10.5802/jtnb.545, J. Théor. Nombres Bordx. (2006), 18 299-313. (2006) Zbl1139.11011MR2289425DOI10.5802/jtnb.545
  2. Bennett, M. A., Skinner, C. M., Ternary diophantine equations via Galois representations and modular forms, Can. J. Math. (2004), 56 23-54. (2004) Zbl1053.11025MR2031121
  3. Beukers, F., On the generalized Ramanujan-Nagell equation. I, Acta Arith. (1980/81), 38 389-410. (1980) MR0621008
  4. Bilu, Y., Hanrot, G., Voutier, P. M., Mignotte), (M., Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte), J. Reine Angew. Math. (2001), 539 75-122. (2001) MR1863855
  5. Cangül, I. N., Demirci, M., Luca, F., Pintér, Á., Soydan, G., On the diophantine equation x 2 + 2 a · 11 b = y n , Fibonacci Q. (2010), 48 39-46. (2010) MR2663418
  6. Carmichael, R. D., On the numerical factors of the arithmetic forms α n ± β n , Ann. of Math. (2) (1913/14), 15 30-48. (1913) MR1502458
  7. Cohn, J. H. E., 10.1093/qmath/42.1.27, Q. J. Math., Oxf. II. Ser. 42 (1991), 27-30. (1991) MR1094339DOI10.1093/qmath/42.1.27
  8. Cohn, J. H. E., 10.1007/BF01197049, Arch. Math. (1992), 59 341-344. (1992) MR1179459DOI10.1007/BF01197049
  9. Le, M., 10.1006/jnth.1995.1138, J. Number Theory (1995), 55 209-221. (1995) MR1366571DOI10.1006/jnth.1995.1138
  10. Le, M., 10.1007/s00013-002-8213-5, Arch. Math. (2002), 78 26-35. (2002) MR1887313DOI10.1007/s00013-002-8213-5
  11. Ljunggren, W., Einige Sätze über Unbestimmte Gleichungen von der Form A x 4 + B x 2 + C = D y 2 , German Skr. Norske Vid.-Akad., Oslo. I. Math.-Naturvid. Kl. No. 9. Oslo: Jacob Dybwad (1943). (1943) MR0011476
  12. Luca, F., On the equation x 2 + 2 a · 3 b = y n , Int. J. Math. Math. Sci. (2002), 29 239-244. (2002) MR1897992
  13. Luca, F., Togbé, A., On the diophantine equation x 2 + 2 a · 5 b = y n , Int. J. Number Theory (2008), 4 973-979. (2008) MR2483306
  14. Luca, F., Togbé, A., On the diophantine equation x 2 + 2 α 13 β = y n , Colloq. Math. (2009), 116 139-146. (2009) MR2504836
  15. Mihilescu, P., Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math. (2004), 572 167-195. (2004) MR2076124
  16. Rabinowicz, S., The solution of y 2 ± 2 n = x 3 , Proc. Amer. Math. Soc. (1976), 62 1-6. (1976) 
  17. Siksek, S., 10.5802/jtnb.429, J. Théor. Nombres Bordx. (2003), 15 839-846. (2003) Zbl1026.11043MR2142239DOI10.5802/jtnb.429
  18. Voutier, P. M., 10.1090/S0025-5718-1995-1284673-6, Math. Comput. (1995), 64 869-888. (1995) Zbl0832.11009MR1284673DOI10.1090/S0025-5718-1995-1284673-6

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.