The diophantine equation
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 3, page 645-654
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGou, Su, and Wang, Tingting. "The diophantine equation $x^2+2^a\cdot 17^b=y^n$." Czechoslovak Mathematical Journal 62.3 (2012): 645-654. <http://eudml.org/doc/247237>.
@article{Gou2012,
abstract = {Let $\mathbb \{Z\}$, $ \mathbb \{N\}$ be the sets of all integers and positive integers, respectively. Let $p$ be a fixed odd prime. Recently, there have been many papers concerned with solutions $(x, y, n, a, b)$ of the equation $ x^2+2^ap^b=y^n$, $x, y, n\in \mathbb \{N\}$, $\gcd (x, y)=1$, $n\ge 3$, $a, b\in \mathbb \{Z\}$, $a\ge 0$, $b\ge 0. $ And all solutions of it have been determined for the cases $p=3$, $p=5$, $p=11$ and $p=13$. In this paper, we mainly concentrate on the case $p=3$, and using certain recent results on exponential diophantine equations including the famous Catalan equation, all solutions $(x, y, n, a, b)$ of the equation $x^2+2^a\cdot 17^b=y^n$, $x, y, n\in \mathbb \{N\}$, $\gcd (x, y)=1$, $n\ge 3$, $a, b\in \mathbb \{Z\}$, $ a\ge 0$, $ b\ge 0$, are determined.},
author = {Gou, Su, Wang, Tingting},
journal = {Czechoslovak Mathematical Journal},
keywords = {exponential diophantine equation; modular approach; arithmetic properties of Lucas numbers; exponential diophantine equation; modular approach; Lucas number},
language = {eng},
number = {3},
pages = {645-654},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The diophantine equation $x^2+2^a\cdot 17^b=y^n$},
url = {http://eudml.org/doc/247237},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Gou, Su
AU - Wang, Tingting
TI - The diophantine equation $x^2+2^a\cdot 17^b=y^n$
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 3
SP - 645
EP - 654
AB - Let $\mathbb {Z}$, $ \mathbb {N}$ be the sets of all integers and positive integers, respectively. Let $p$ be a fixed odd prime. Recently, there have been many papers concerned with solutions $(x, y, n, a, b)$ of the equation $ x^2+2^ap^b=y^n$, $x, y, n\in \mathbb {N}$, $\gcd (x, y)=1$, $n\ge 3$, $a, b\in \mathbb {Z}$, $a\ge 0$, $b\ge 0. $ And all solutions of it have been determined for the cases $p=3$, $p=5$, $p=11$ and $p=13$. In this paper, we mainly concentrate on the case $p=3$, and using certain recent results on exponential diophantine equations including the famous Catalan equation, all solutions $(x, y, n, a, b)$ of the equation $x^2+2^a\cdot 17^b=y^n$, $x, y, n\in \mathbb {N}$, $\gcd (x, y)=1$, $n\ge 3$, $a, b\in \mathbb {Z}$, $ a\ge 0$, $ b\ge 0$, are determined.
LA - eng
KW - exponential diophantine equation; modular approach; arithmetic properties of Lucas numbers; exponential diophantine equation; modular approach; Lucas number
UR - http://eudml.org/doc/247237
ER -
References
top- Abouzaid, M., 10.5802/jtnb.545, J. Théor. Nombres Bordx. (2006), 18 299-313. (2006) Zbl1139.11011MR2289425DOI10.5802/jtnb.545
- Bennett, M. A., Skinner, C. M., Ternary diophantine equations via Galois representations and modular forms, Can. J. Math. (2004), 56 23-54. (2004) Zbl1053.11025MR2031121
- Beukers, F., On the generalized Ramanujan-Nagell equation. I, Acta Arith. (1980/81), 38 389-410. (1980) MR0621008
- Bilu, Y., Hanrot, G., Voutier, P. M., Mignotte), (M., Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte), J. Reine Angew. Math. (2001), 539 75-122. (2001) MR1863855
- Cangül, I. N., Demirci, M., Luca, F., Pintér, Á., Soydan, G., On the diophantine equation , Fibonacci Q. (2010), 48 39-46. (2010) MR2663418
- Carmichael, R. D., On the numerical factors of the arithmetic forms , Ann. of Math. (2) (1913/14), 15 30-48. (1913) MR1502458
- Cohn, J. H. E., 10.1093/qmath/42.1.27, Q. J. Math., Oxf. II. Ser. 42 (1991), 27-30. (1991) MR1094339DOI10.1093/qmath/42.1.27
- Cohn, J. H. E., 10.1007/BF01197049, Arch. Math. (1992), 59 341-344. (1992) MR1179459DOI10.1007/BF01197049
- Le, M., 10.1006/jnth.1995.1138, J. Number Theory (1995), 55 209-221. (1995) MR1366571DOI10.1006/jnth.1995.1138
- Le, M., 10.1007/s00013-002-8213-5, Arch. Math. (2002), 78 26-35. (2002) MR1887313DOI10.1007/s00013-002-8213-5
- Ljunggren, W., Einige Sätze über Unbestimmte Gleichungen von der Form , German Skr. Norske Vid.-Akad., Oslo. I. Math.-Naturvid. Kl. No. 9. Oslo: Jacob Dybwad (1943). (1943) MR0011476
- Luca, F., On the equation , Int. J. Math. Math. Sci. (2002), 29 239-244. (2002) MR1897992
- Luca, F., Togbé, A., On the diophantine equation , Int. J. Number Theory (2008), 4 973-979. (2008) MR2483306
- Luca, F., Togbé, A., On the diophantine equation , Colloq. Math. (2009), 116 139-146. (2009) MR2504836
- Mihilescu, P., Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math. (2004), 572 167-195. (2004) MR2076124
- Rabinowicz, S., The solution of , Proc. Amer. Math. Soc. (1976), 62 1-6. (1976)
- Siksek, S., 10.5802/jtnb.429, J. Théor. Nombres Bordx. (2003), 15 839-846. (2003) Zbl1026.11043MR2142239DOI10.5802/jtnb.429
- Voutier, P. M., 10.1090/S0025-5718-1995-1284673-6, Math. Comput. (1995), 64 869-888. (1995) Zbl0832.11009MR1284673DOI10.1090/S0025-5718-1995-1284673-6
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.