Fixed-time tracking control for nonholonomic mobile robot
Ou Meiying; Sun Haibin; Zhang Zhenxing; Li Lingchun; Wang Xiang-ao
Kybernetika (2021)
- Issue: 2, page 220-235
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topMeiying, Ou, et al. "Fixed-time tracking control for nonholonomic mobile robot." Kybernetika (2021): 220-235. <http://eudml.org/doc/297825>.
@article{Meiying2021,
abstract = {This paper investigates the fixed-time trajectory tracking control problem for a nonholonomic mobile robot. Firstly, the tracking error system is derived for the mobile robot by the aid of a global invertible transformation. Then, based on the unified error dynamics and by using the fixed-time control method, continuous fixed-time tracking controllers are developed for the mobile robot such that the robot can track the desired trajectory in a fixed time. Moreover, the settling time is independent of the system initial conditions and only determined by the controller parameters. Finally, numerical simulations are provided to demonstrate the effectiveness of the theoretical results.},
author = {Meiying, Ou, Haibin, Sun, Zhenxing, Zhang, Lingchun, Li, Xiang-ao, Wang},
journal = {Kybernetika},
keywords = {nonholonomic mobile robot systems; fixed-time control; trajectory tracking},
language = {eng},
number = {2},
pages = {220-235},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Fixed-time tracking control for nonholonomic mobile robot},
url = {http://eudml.org/doc/297825},
year = {2021},
}
TY - JOUR
AU - Meiying, Ou
AU - Haibin, Sun
AU - Zhenxing, Zhang
AU - Lingchun, Li
AU - Xiang-ao, Wang
TI - Fixed-time tracking control for nonholonomic mobile robot
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
IS - 2
SP - 220
EP - 235
AB - This paper investigates the fixed-time trajectory tracking control problem for a nonholonomic mobile robot. Firstly, the tracking error system is derived for the mobile robot by the aid of a global invertible transformation. Then, based on the unified error dynamics and by using the fixed-time control method, continuous fixed-time tracking controllers are developed for the mobile robot such that the robot can track the desired trajectory in a fixed time. Moreover, the settling time is independent of the system initial conditions and only determined by the controller parameters. Finally, numerical simulations are provided to demonstrate the effectiveness of the theoretical results.
LA - eng
KW - nonholonomic mobile robot systems; fixed-time control; trajectory tracking
UR - http://eudml.org/doc/297825
ER -
References
top- Antonelli, G., Chiaverini, S., Fusco, G., , IEEE Trans. Fuzzy Syst. 15 (2007), 211-221. DOI
- Bhat, S., Bernstein, D., 10.1137/S0363012997321358, SIAM J. Control Optim. 38 (2000), 751-766. Zbl0945.34039MR1756893DOI10.1137/S0363012997321358
- Brockett, R., Differential Geometric Control Theory., Birkhauser, Boston 1983, pp. 181-191.
- Campion, G., Bastin, G., D'Andrea-Novel, B, , IEEE Trans. Rob. Autom. 12 (1996), 47-62. DOI
- Chen, X., Li, C., Li, G., Luo, Y., , Robot 30 (2008), 326-332. DOI
- Du, H., He, Y., Cheng, Y., , Kybernetika 49 (2013), 507-523. Zbl1274.93008MR3117911DOI
- Filipescu, A., Minzu, V., Dumitrascu, B., Filipescu, A., Minca, E., Trajectory-tracking and discrete-time sliding-mode control of wheeled mobile robots., In: Proc. IEEE Int. Conf. Inform. Autom. Shenzhen 2011, pp. 27-32.
- Hardy, G., Littlewood, J., Polya, G., Inequalities., Cambridge University Press, Cambridge 1952. Zbl0634.26008MR0046395
- Huang, W., Yang, Y., Hua, C., Fixed-time tracking control approach design for nonholonomic mobile robot., In: Proc. 35th CCC, Chengdu 2016, pp. 3423-3428.
- Kanayama, Y., Kimura, Y., Miyazaki, F., Noguchi, T., A stable tracking control method for an autonomous mobile robot., In: Proc. IEEE Int. Conf. Rob. Autom. Cincinnati1990, pp. 384-389.
- Klančar, G., Škrjanc, I., , Robot. Auton. Syst. 55 (2007), 460-469. DOI
- Lan, Q., Niu, H., Liu, Y., Xu, H., , Kybernetika 53 (2017), 780-802. MR3750103DOI
- Levant, A., On fixed and finite time stability in sliding mode control., In: Proc. 52nd IEEE CDC, Florence 2013, pp. 4260-4265. MR3050726
- Li, S., Tian, Y., 10.1080/00207170601148291, Int. J. Control 80 (2007), 646-657. MR2304124DOI10.1080/00207170601148291
- Li, J., Yang, Y., Hua, C., Guan, X., , IET Control Theory A. 11 (2016), 1184-1193. MR3700336DOI
- Li, H., Zhu, M., Chu, Z., Du, H., Wen, G., Alotaibi, N., , Asian J. Control 20 (2018), 39-48. MR3756801DOI
- Mendoza, M., Bonilla, I., Reyes, F., Gonzalezgalvan, E., A Lyapunov-based design tool of impedance controllers for robot manipulators., Kybernetika 48 (2012), 1136-1155. MR3052878
- Ou, M., Gu, S., Wang, X., Dong, K., , Kybernetika 51 (2015), 1049-1067. MR3453685DOI
- Ou, M., Li, S., Wang, C., , Asian J. Control 16 (2014), 679-691. MR3216258DOI
- Ou, M., Sun, H., Li, S., Finite time tracking control of a nonholonomic mobile robot with external disturbances., In: Proc. 31th CCC, Hefei 2012, pp. 853-858. Zbl1265.68291MR3013579
- Polyakov, A., , IEEE Trans. Automat. Control 57 (2012), 2106-2110. MR2957184DOI
- Qian, C., Lin, W., , IEEE Trans. Automat. Control 46 (2001), 1061-1079. Zbl1012.93053MR1842139DOI
- Sun, H., Hou, L., Zong, G., Yu, X., 10.1109/TAES.2018.2849158, IEEE Trans. Aero. Elec. Syst. 55 (2019), 124-134. DOI10.1109/TAES.2018.2849158
- Teng, T., Yang, C., He, W., Na, J., Li, Z., Transient tracking performance guaranteed neural control of robotic manipulators with finite-time learning convergence., In: Proc. 24th ICONIP, Guangzhou 2017, pp. 365-375.
- Tian, B., Lu, H., Zuo, Z., Yang, W., , IEEE Trans. Cybernetics 49 (2019), 1545-1550. MR3871136DOI
- Wang, X., Zong, G., Sun, H., , IET Control Theory A. 10 (2016), 1142-1150. MR3524845DOI
- Wu, Y., Wang, B., Zong, G., 10.1109/TCSII.2005.852528, IEEE Trans. Circuits Syst. II: Express Briefs 52 (2005), 798-802. DOI10.1109/TCSII.2005.852528
- Ye, J., , Neurocomputing 71 (2008), 3373-3378. DOI
- Zhang, Z., Wu, Y., , Int. J. Control 90 (2017), 1327-1344. MR3652582DOI
- Zuo, Z., , IET Control Theory A. 9 (2015), 545-552. MR3328478DOI
- Zuo, Z., Tie, L., , Int. J. Control 87 (2014), 363-370. MR3172512DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.