Fixed-time tracking control for nonholonomic mobile robot

Ou Meiying; Sun Haibin; Zhang Zhenxing; Li Lingchun; Wang Xiang-ao

Kybernetika (2021)

  • Issue: 2, page 220-235
  • ISSN: 0023-5954

Abstract

top
This paper investigates the fixed-time trajectory tracking control problem for a nonholonomic mobile robot. Firstly, the tracking error system is derived for the mobile robot by the aid of a global invertible transformation. Then, based on the unified error dynamics and by using the fixed-time control method, continuous fixed-time tracking controllers are developed for the mobile robot such that the robot can track the desired trajectory in a fixed time. Moreover, the settling time is independent of the system initial conditions and only determined by the controller parameters. Finally, numerical simulations are provided to demonstrate the effectiveness of the theoretical results.

How to cite

top

Meiying, Ou, et al. "Fixed-time tracking control for nonholonomic mobile robot." Kybernetika (2021): 220-235. <http://eudml.org/doc/297825>.

@article{Meiying2021,
abstract = {This paper investigates the fixed-time trajectory tracking control problem for a nonholonomic mobile robot. Firstly, the tracking error system is derived for the mobile robot by the aid of a global invertible transformation. Then, based on the unified error dynamics and by using the fixed-time control method, continuous fixed-time tracking controllers are developed for the mobile robot such that the robot can track the desired trajectory in a fixed time. Moreover, the settling time is independent of the system initial conditions and only determined by the controller parameters. Finally, numerical simulations are provided to demonstrate the effectiveness of the theoretical results.},
author = {Meiying, Ou, Haibin, Sun, Zhenxing, Zhang, Lingchun, Li, Xiang-ao, Wang},
journal = {Kybernetika},
keywords = {nonholonomic mobile robot systems; fixed-time control; trajectory tracking},
language = {eng},
number = {2},
pages = {220-235},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Fixed-time tracking control for nonholonomic mobile robot},
url = {http://eudml.org/doc/297825},
year = {2021},
}

TY - JOUR
AU - Meiying, Ou
AU - Haibin, Sun
AU - Zhenxing, Zhang
AU - Lingchun, Li
AU - Xiang-ao, Wang
TI - Fixed-time tracking control for nonholonomic mobile robot
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
IS - 2
SP - 220
EP - 235
AB - This paper investigates the fixed-time trajectory tracking control problem for a nonholonomic mobile robot. Firstly, the tracking error system is derived for the mobile robot by the aid of a global invertible transformation. Then, based on the unified error dynamics and by using the fixed-time control method, continuous fixed-time tracking controllers are developed for the mobile robot such that the robot can track the desired trajectory in a fixed time. Moreover, the settling time is independent of the system initial conditions and only determined by the controller parameters. Finally, numerical simulations are provided to demonstrate the effectiveness of the theoretical results.
LA - eng
KW - nonholonomic mobile robot systems; fixed-time control; trajectory tracking
UR - http://eudml.org/doc/297825
ER -

References

top
  1. Antonelli, G., Chiaverini, S., Fusco, G., , IEEE Trans. Fuzzy Syst. 15 (2007), 211-221. DOI
  2. Bhat, S., Bernstein, D., 10.1137/S0363012997321358, SIAM J. Control Optim. 38 (2000), 751-766. Zbl0945.34039MR1756893DOI10.1137/S0363012997321358
  3. Brockett, R., Differential Geometric Control Theory., Birkhauser, Boston 1983, pp. 181-191. 
  4. Campion, G., Bastin, G., D'Andrea-Novel, B, , IEEE Trans. Rob. Autom. 12 (1996), 47-62. DOI
  5. Chen, X., Li, C., Li, G., Luo, Y., , Robot 30 (2008), 326-332. DOI
  6. Du, H., He, Y., Cheng, Y., , Kybernetika 49 (2013), 507-523. Zbl1274.93008MR3117911DOI
  7. Filipescu, A., Minzu, V., Dumitrascu, B., Filipescu, A., Minca, E., Trajectory-tracking and discrete-time sliding-mode control of wheeled mobile robots., In: Proc. IEEE Int. Conf. Inform. Autom. Shenzhen 2011, pp. 27-32. 
  8. Hardy, G., Littlewood, J., Polya, G., Inequalities., Cambridge University Press, Cambridge 1952. Zbl0634.26008MR0046395
  9. Huang, W., Yang, Y., Hua, C., Fixed-time tracking control approach design for nonholonomic mobile robot., In: Proc. 35th CCC, Chengdu 2016, pp. 3423-3428. 
  10. Kanayama, Y., Kimura, Y., Miyazaki, F., Noguchi, T., A stable tracking control method for an autonomous mobile robot., In: Proc. IEEE Int. Conf. Rob. Autom. Cincinnati1990, pp. 384-389. 
  11. Klančar, G., Škrjanc, I., , Robot. Auton. Syst. 55 (2007), 460-469. DOI
  12. Lan, Q., Niu, H., Liu, Y., Xu, H., , Kybernetika 53 (2017), 780-802. MR3750103DOI
  13. Levant, A., On fixed and finite time stability in sliding mode control., In: Proc. 52nd IEEE CDC, Florence 2013, pp. 4260-4265. MR3050726
  14. Li, S., Tian, Y., 10.1080/00207170601148291, Int. J. Control 80 (2007), 646-657. MR2304124DOI10.1080/00207170601148291
  15. Li, J., Yang, Y., Hua, C., Guan, X., , IET Control Theory A. 11 (2016), 1184-1193. MR3700336DOI
  16. Li, H., Zhu, M., Chu, Z., Du, H., Wen, G., Alotaibi, N., , Asian J. Control 20 (2018), 39-48. MR3756801DOI
  17. Mendoza, M., Bonilla, I., Reyes, F., Gonzalezgalvan, E., A Lyapunov-based design tool of impedance controllers for robot manipulators., Kybernetika 48 (2012), 1136-1155. MR3052878
  18. Ou, M., Gu, S., Wang, X., Dong, K., , Kybernetika 51 (2015), 1049-1067. MR3453685DOI
  19. Ou, M., Li, S., Wang, C., , Asian J. Control 16 (2014), 679-691. MR3216258DOI
  20. Ou, M., Sun, H., Li, S., Finite time tracking control of a nonholonomic mobile robot with external disturbances., In: Proc. 31th CCC, Hefei 2012, pp. 853-858. Zbl1265.68291MR3013579
  21. Polyakov, A., , IEEE Trans. Automat. Control 57 (2012), 2106-2110. MR2957184DOI
  22. Qian, C., Lin, W., , IEEE Trans. Automat. Control 46 (2001), 1061-1079. Zbl1012.93053MR1842139DOI
  23. Sun, H., Hou, L., Zong, G., Yu, X., 10.1109/TAES.2018.2849158, IEEE Trans. Aero. Elec. Syst. 55 (2019), 124-134. DOI10.1109/TAES.2018.2849158
  24. Teng, T., Yang, C., He, W., Na, J., Li, Z., Transient tracking performance guaranteed neural control of robotic manipulators with finite-time learning convergence., In: Proc. 24th ICONIP, Guangzhou 2017, pp. 365-375. 
  25. Tian, B., Lu, H., Zuo, Z., Yang, W., , IEEE Trans. Cybernetics 49 (2019), 1545-1550. MR3871136DOI
  26. Wang, X., Zong, G., Sun, H., , IET Control Theory A. 10 (2016), 1142-1150. MR3524845DOI
  27. Wu, Y., Wang, B., Zong, G., 10.1109/TCSII.2005.852528, IEEE Trans. Circuits Syst. II: Express Briefs 52 (2005), 798-802. DOI10.1109/TCSII.2005.852528
  28. Ye, J., , Neurocomputing 71 (2008), 3373-3378. DOI
  29. Zhang, Z., Wu, Y., , Int. J. Control 90 (2017), 1327-1344. MR3652582DOI
  30. Zuo, Z., , IET Control Theory A. 9 (2015), 545-552. MR3328478DOI
  31. Zuo, Z., Tie, L., , Int. J. Control 87 (2014), 363-370. MR3172512DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.