On the lattice of pronormal subgroups of dicyclic, alternating and symmetric groups

Shrawani Mitkari; Vilas Kharat

Mathematica Bohemica (2024)

  • Volume: 149, Issue: 3, page 427-438
  • ISSN: 0862-7959

Abstract

top
In this paper, the structures of collection of pronormal subgroups of dicyclic, symmetric and alternating groups G are studied in respect of formation of lattices L ( G ) and sublattices of L ( G ) . It is proved that the collections of all pronormal subgroups of A n and S n do not form sublattices of respective L ( A n ) and L ( S n ) , whereas the collection of all pronormal subgroups LPrN ( Dic n ) of a dicyclic group is a sublattice of L ( Dic n ) . Furthermore, it is shown that L ( Dic n ) and LPrN ( Dic n ) are lower semimodular lattices.

How to cite

top

Mitkari, Shrawani, and Kharat, Vilas. "On the lattice of pronormal subgroups of dicyclic, alternating and symmetric groups." Mathematica Bohemica 149.3 (2024): 427-438. <http://eudml.org/doc/299480>.

@article{Mitkari2024,
abstract = {In this paper, the structures of collection of pronormal subgroups of dicyclic, symmetric and alternating groups $G$ are studied in respect of formation of lattices $\{\rm L\}(G)$ and sublattices of $\{\rm L\}(G)$. It is proved that the collections of all pronormal subgroups of $\{\rm A\}_n$ and S$_n$ do not form sublattices of respective $\{\rm L\}(\{\rm A\}_n)$ and $\{\rm L\}(\{\rm S\}_n)$, whereas the collection of all pronormal subgroups $\{\rm LPrN\}(\{\rm Dic\}_n)$ of a dicyclic group is a sublattice of $\{\rm L\}(\{\rm Dic\}_n)$. Furthermore, it is shown that $\{\rm L\}(\{\rm Dic\}_n)$ and $\{\rm LPrN\}(\{\rm Dic\}_n$) are lower semimodular lattices.},
author = {Mitkari, Shrawani, Kharat, Vilas},
journal = {Mathematica Bohemica},
keywords = {alternating group; dicyclic group; pronormal subgroup; lattice of subgroups; lower semimodular lattice},
language = {eng},
number = {3},
pages = {427-438},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the lattice of pronormal subgroups of dicyclic, alternating and symmetric groups},
url = {http://eudml.org/doc/299480},
volume = {149},
year = {2024},
}

TY - JOUR
AU - Mitkari, Shrawani
AU - Kharat, Vilas
TI - On the lattice of pronormal subgroups of dicyclic, alternating and symmetric groups
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 3
SP - 427
EP - 438
AB - In this paper, the structures of collection of pronormal subgroups of dicyclic, symmetric and alternating groups $G$ are studied in respect of formation of lattices ${\rm L}(G)$ and sublattices of ${\rm L}(G)$. It is proved that the collections of all pronormal subgroups of ${\rm A}_n$ and S$_n$ do not form sublattices of respective ${\rm L}({\rm A}_n)$ and ${\rm L}({\rm S}_n)$, whereas the collection of all pronormal subgroups ${\rm LPrN}({\rm Dic}_n)$ of a dicyclic group is a sublattice of ${\rm L}({\rm Dic}_n)$. Furthermore, it is shown that ${\rm L}({\rm Dic}_n)$ and ${\rm LPrN}({\rm Dic}_n$) are lower semimodular lattices.
LA - eng
KW - alternating group; dicyclic group; pronormal subgroup; lattice of subgroups; lower semimodular lattice
UR - http://eudml.org/doc/299480
ER -

References

top
  1. Benesh, B., 10.1090/conm/470, Computational Group Theory and the Theory of Groups Contemporary Mathematics 470. AMS, Providence (2008), 21-26. (2008) Zbl1159.20004MR2478411DOI10.1090/conm/470
  2. Călugăreanu, G., 10.1007/978-94-015-9588-9, Kluwer Texts in the Mathematical Sciences 22. Kluwer, Dordrecht (2000). (2000) Zbl0959.06001MR1782739DOI10.1007/978-94-015-9588-9
  3. Giovanni, F. de, Vincenzi, G., Pronormality in infinite groups, Math. Proc. R. Ir. Acad. 100A (2000), 189-203. (2000) Zbl0980.20020MR1883103
  4. Grätzer, G., 10.1007/978-3-0348-7633-9, Academic Press, New York (1978). (1978) Zbl0385.06015MR0509213DOI10.1007/978-3-0348-7633-9
  5. Hall, P., 10.1112/plms/s3-6.2.286, Proc. Lond. Math. Soc., III. Ser. 6 (1956), 286-304. (1956) Zbl0075.23907MR0077533DOI10.1112/plms/s3-6.2.286
  6. Lazorec, M.-S., Tărnăuceanu, M., 10.2989/16073606.2019.1673498, Quaest. Math. 44 (2021), 129-146. (2021) Zbl1505.20064MR4211983DOI10.2989/16073606.2019.1673498
  7. Luthar, I. S., Algebra. Volume 1. Groups, Narosa Publishing, New Delhi (1996). (1996) Zbl0943.20001
  8. Mann, A., 10.1112/jlms/s1-44.1.175, J. Lond. Math. Soc. 44 (1969), 175-176. (1969) Zbl0165.34003MR0238954DOI10.1112/jlms/s1-44.1.175
  9. Mitkari, S., Kharat, V., Agalave, M., On the structure of pronormal subgroups of dihedral groups, J. Indian Math. Soc. (N.S) 90 (2023), 401-410. (2023) Zbl7742572MR4613640
  10. Mitkari, S., Kharat, V., Ballal, S., 10.7151/dmgaa.1425, Discuss. Math., Gen. Algebra Appl. 43 (2023), 309-326. (2023) Zbl1538.20013MR4664771DOI10.7151/dmgaa.1425
  11. Peng, T. A., 10.1112/jlms/s2-3.2.301, J. Lond. Math. Soc., II. Ser. 3 (1971), 301-306. (1971) Zbl0209.05502MR0276319DOI10.1112/jlms/s2-3.2.301
  12. Rose, J. S., 10.1112/plms/s3-17.3.447, Proc. Lond. Math. Soc., III. Ser. 17 (1967), 447-469. (1967) Zbl0153.03602MR0212092DOI10.1112/plms/s3-17.3.447
  13. Schmidt, R., 10.1515/9783110868647, de Gruyter Expositions in Mathematics 14. Walter de Gruyter, Berlin (1994). (1994) Zbl0843.20003MR1292462DOI10.1515/9783110868647
  14. Stern, M., 10.1017/CBO9780511665578, Encyclopedia of Mathematics and Its Applications 73. Cambridge University Press, Cambridge (1999). (1999) Zbl0957.06008MR1695504DOI10.1017/CBO9780511665578
  15. Suzuki, M., 10.1007/978-3-642-52758-6, Springer, Heidelberg (1956). (1956) Zbl0070.25406MR0083487DOI10.1007/978-3-642-52758-6
  16. Vdovin, E. P., Revin, D. O., 10.1007/s10469-013-9215-z, Algebra Logic 52 (2013), 15-23. (2013) Zbl1279.20028MR3113475DOI10.1007/s10469-013-9215-z

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.