On the lattice of pronormal subgroups of dicyclic, alternating and symmetric groups
Shrawani Mitkari; Vilas Kharat
Mathematica Bohemica (2024)
- Volume: 149, Issue: 3, page 427-438
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMitkari, Shrawani, and Kharat, Vilas. "On the lattice of pronormal subgroups of dicyclic, alternating and symmetric groups." Mathematica Bohemica 149.3 (2024): 427-438. <http://eudml.org/doc/299480>.
@article{Mitkari2024,
abstract = {In this paper, the structures of collection of pronormal subgroups of dicyclic, symmetric and alternating groups $G$ are studied in respect of formation of lattices $\{\rm L\}(G)$ and sublattices of $\{\rm L\}(G)$. It is proved that the collections of all pronormal subgroups of $\{\rm A\}_n$ and S$_n$ do not form sublattices of respective $\{\rm L\}(\{\rm A\}_n)$ and $\{\rm L\}(\{\rm S\}_n)$, whereas the collection of all pronormal subgroups $\{\rm LPrN\}(\{\rm Dic\}_n)$ of a dicyclic group is a sublattice of $\{\rm L\}(\{\rm Dic\}_n)$. Furthermore, it is shown that $\{\rm L\}(\{\rm Dic\}_n)$ and $\{\rm LPrN\}(\{\rm Dic\}_n$) are lower semimodular lattices.},
author = {Mitkari, Shrawani, Kharat, Vilas},
journal = {Mathematica Bohemica},
keywords = {alternating group; dicyclic group; pronormal subgroup; lattice of subgroups; lower semimodular lattice},
language = {eng},
number = {3},
pages = {427-438},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the lattice of pronormal subgroups of dicyclic, alternating and symmetric groups},
url = {http://eudml.org/doc/299480},
volume = {149},
year = {2024},
}
TY - JOUR
AU - Mitkari, Shrawani
AU - Kharat, Vilas
TI - On the lattice of pronormal subgroups of dicyclic, alternating and symmetric groups
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 3
SP - 427
EP - 438
AB - In this paper, the structures of collection of pronormal subgroups of dicyclic, symmetric and alternating groups $G$ are studied in respect of formation of lattices ${\rm L}(G)$ and sublattices of ${\rm L}(G)$. It is proved that the collections of all pronormal subgroups of ${\rm A}_n$ and S$_n$ do not form sublattices of respective ${\rm L}({\rm A}_n)$ and ${\rm L}({\rm S}_n)$, whereas the collection of all pronormal subgroups ${\rm LPrN}({\rm Dic}_n)$ of a dicyclic group is a sublattice of ${\rm L}({\rm Dic}_n)$. Furthermore, it is shown that ${\rm L}({\rm Dic}_n)$ and ${\rm LPrN}({\rm Dic}_n$) are lower semimodular lattices.
LA - eng
KW - alternating group; dicyclic group; pronormal subgroup; lattice of subgroups; lower semimodular lattice
UR - http://eudml.org/doc/299480
ER -
References
top- Benesh, B., 10.1090/conm/470, Computational Group Theory and the Theory of Groups Contemporary Mathematics 470. AMS, Providence (2008), 21-26. (2008) Zbl1159.20004MR2478411DOI10.1090/conm/470
- Călugăreanu, G., 10.1007/978-94-015-9588-9, Kluwer Texts in the Mathematical Sciences 22. Kluwer, Dordrecht (2000). (2000) Zbl0959.06001MR1782739DOI10.1007/978-94-015-9588-9
- Giovanni, F. de, Vincenzi, G., Pronormality in infinite groups, Math. Proc. R. Ir. Acad. 100A (2000), 189-203. (2000) Zbl0980.20020MR1883103
- Grätzer, G., 10.1007/978-3-0348-7633-9, Academic Press, New York (1978). (1978) Zbl0385.06015MR0509213DOI10.1007/978-3-0348-7633-9
- Hall, P., 10.1112/plms/s3-6.2.286, Proc. Lond. Math. Soc., III. Ser. 6 (1956), 286-304. (1956) Zbl0075.23907MR0077533DOI10.1112/plms/s3-6.2.286
- Lazorec, M.-S., Tărnăuceanu, M., 10.2989/16073606.2019.1673498, Quaest. Math. 44 (2021), 129-146. (2021) Zbl1505.20064MR4211983DOI10.2989/16073606.2019.1673498
- Luthar, I. S., Algebra. Volume 1. Groups, Narosa Publishing, New Delhi (1996). (1996) Zbl0943.20001
- Mann, A., 10.1112/jlms/s1-44.1.175, J. Lond. Math. Soc. 44 (1969), 175-176. (1969) Zbl0165.34003MR0238954DOI10.1112/jlms/s1-44.1.175
- Mitkari, S., Kharat, V., Agalave, M., On the structure of pronormal subgroups of dihedral groups, J. Indian Math. Soc. (N.S) 90 (2023), 401-410. (2023) Zbl7742572MR4613640
- Mitkari, S., Kharat, V., Ballal, S., 10.7151/dmgaa.1425, Discuss. Math., Gen. Algebra Appl. 43 (2023), 309-326. (2023) Zbl1538.20013MR4664771DOI10.7151/dmgaa.1425
- Peng, T. A., 10.1112/jlms/s2-3.2.301, J. Lond. Math. Soc., II. Ser. 3 (1971), 301-306. (1971) Zbl0209.05502MR0276319DOI10.1112/jlms/s2-3.2.301
- Rose, J. S., 10.1112/plms/s3-17.3.447, Proc. Lond. Math. Soc., III. Ser. 17 (1967), 447-469. (1967) Zbl0153.03602MR0212092DOI10.1112/plms/s3-17.3.447
- Schmidt, R., 10.1515/9783110868647, de Gruyter Expositions in Mathematics 14. Walter de Gruyter, Berlin (1994). (1994) Zbl0843.20003MR1292462DOI10.1515/9783110868647
- Stern, M., 10.1017/CBO9780511665578, Encyclopedia of Mathematics and Its Applications 73. Cambridge University Press, Cambridge (1999). (1999) Zbl0957.06008MR1695504DOI10.1017/CBO9780511665578
- Suzuki, M., 10.1007/978-3-642-52758-6, Springer, Heidelberg (1956). (1956) Zbl0070.25406MR0083487DOI10.1007/978-3-642-52758-6
- Vdovin, E. P., Revin, D. O., 10.1007/s10469-013-9215-z, Algebra Logic 52 (2013), 15-23. (2013) Zbl1279.20028MR3113475DOI10.1007/s10469-013-9215-z
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.