Fully distributed consensus for high-order strict-feedback nonlinear multiagent systems with switched topologies

Yifei Wu; Sunyu Zheng; Rui Xu; Ronghao Wang; Zhengrong Xiang

Kybernetika (2023)

  • Volume: 59, Issue: 3, page 484-511
  • ISSN: 0023-5954

Abstract

top
This paper studies the distributed consensus problem of high-order strict-feedback nonlinear multiagent systems. By employing the adaptive backstepping technique and switched system theory, a novel protocol is proposed for MASs with switched topologies. Global information such as the number of agents and communication topology is not used. In addition, the communication topology between agents can be switched between possible topologies at any time. Based on the Lyapunov function method, the proposed adaptive protocol guarantees the complete consensus of multiagent systems without restricting the dwell time of the switched signal. Finally, two numerical examples are provided to illustrate the effectiveness and advantages of the given protocol.

How to cite

top

Wu, Yifei, et al. "Fully distributed consensus for high-order strict-feedback nonlinear multiagent systems with switched topologies." Kybernetika 59.3 (2023): 484-511. <http://eudml.org/doc/299498>.

@article{Wu2023,
abstract = {This paper studies the distributed consensus problem of high-order strict-feedback nonlinear multiagent systems. By employing the adaptive backstepping technique and switched system theory, a novel protocol is proposed for MASs with switched topologies. Global information such as the number of agents and communication topology is not used. In addition, the communication topology between agents can be switched between possible topologies at any time. Based on the Lyapunov function method, the proposed adaptive protocol guarantees the complete consensus of multiagent systems without restricting the dwell time of the switched signal. Finally, two numerical examples are provided to illustrate the effectiveness and advantages of the given protocol.},
author = {Wu, Yifei, Zheng, Sunyu, Xu, Rui, Wang, Ronghao, Xiang, Zhengrong},
journal = {Kybernetika},
keywords = {fully distributed consensus; multiagent systems; adaptive control; nonlinear systems; arbitrary switching},
language = {eng},
number = {3},
pages = {484-511},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Fully distributed consensus for high-order strict-feedback nonlinear multiagent systems with switched topologies},
url = {http://eudml.org/doc/299498},
volume = {59},
year = {2023},
}

TY - JOUR
AU - Wu, Yifei
AU - Zheng, Sunyu
AU - Xu, Rui
AU - Wang, Ronghao
AU - Xiang, Zhengrong
TI - Fully distributed consensus for high-order strict-feedback nonlinear multiagent systems with switched topologies
JO - Kybernetika
PY - 2023
PB - Institute of Information Theory and Automation AS CR
VL - 59
IS - 3
SP - 484
EP - 511
AB - This paper studies the distributed consensus problem of high-order strict-feedback nonlinear multiagent systems. By employing the adaptive backstepping technique and switched system theory, a novel protocol is proposed for MASs with switched topologies. Global information such as the number of agents and communication topology is not used. In addition, the communication topology between agents can be switched between possible topologies at any time. Based on the Lyapunov function method, the proposed adaptive protocol guarantees the complete consensus of multiagent systems without restricting the dwell time of the switched signal. Finally, two numerical examples are provided to illustrate the effectiveness and advantages of the given protocol.
LA - eng
KW - fully distributed consensus; multiagent systems; adaptive control; nonlinear systems; arbitrary switching
UR - http://eudml.org/doc/299498
ER -

References

top
  1. Chen, J., Li, J., Wu, H., , Int. J. Robust Nonlinear Control 36 (2018), 937-949. MR3818735DOI
  2. Chen, J., Li, J., Yuan, X., , IEEE Trans. Fuzzy Systems 28 (2019), 510-522. DOI
  3. Chen, K., Wang, J., Zhang, Y., Liu, Z., , Nonlinear Dynamics 78 (2014), 881-887. MR3267676DOI
  4. Cui, D., Wu, Y., Xiang, Z., , Int. J. Robust Nonlinear Control 31 (2021), 2976-2992. MR4325489DOI
  5. Du, H., Cheng, Y., He, Y., Jia, R., , Int. J. Robust Nonlinear Control 26 (2016), 329-344. MR3439559DOI
  6. Du, H., He, Y., Cheng, Y., , IEEE Trans. Circuits Systems I: Regular Papers 61 (2014), 1778-1788. DOI
  7. Feng, X., Yang, Y., Wei, D., , Neurocomputing 428 (2021), 12-18. MR4571538DOI
  8. Fu, J., Wang, J., , Int. J. Control Automat. Systems 12 (2014), 919-929. DOI
  9. Fu, J., Wang, J., , Systems Control Lett. 93 (2016), 1-12. MR3505207DOI
  10. Gu, G., Marinovici, L., Lewis, F. L., , IEEE Trans. Automat. Control 57 (2011), 2085-2089. MR2957180DOI
  11. Hua, C., You, X., Guan, X., , IEEE Trans. Cybernetics 47 (2016), 1532-1539. DOI
  12. Hua, C. C., You, X., Guan, X. P., , Automatica 73 (2016), 138-144. MR3552070DOI
  13. Huang, J., Wang, Y. Song. W., Wen, C., Li, G., , IEEE Trans. Cybernet. 48 (2018), 2349-2356. DOI
  14. Jin, X., , Systems Control Lett. 89 (2016), 16-23. MR3459593DOI
  15. Li, Q., Jiang, Z., Flocking control of multi-agent systems with application to nonholonomic multi-robots., Kybernetika 45 (2009), 84-100. MR2489582
  16. Li, Z., Ren, W., Liu, X., Fu, M., , IEEE Trans. Automat. Control 58 (2012), 1786-1791. MR3072861DOI
  17. Li, Z., Wen, G., Duan, Z., Ren, W., , IEEE Trans. Automat. Control 60 (2014), 1152-1157. MR3340810DOI
  18. Li, S., Zou, W., Chen, X., Chen, C., Xiang, Z., Adaptive fully distributed consensus for a class of second-order nonlinear multi-agent systems with switching networks., Int. J. Control Automat. Systems, under review. 
  19. Liu, X., Gao, X., Han, J., , J. Franklin Inst. 353 (2016), 72-94. MR3436814DOI
  20. Liu, W., Huang, J., , IEEE Trans. Automat. Control 65 (2019), 3215-3222. MR4120588DOI
  21. Liu, M., Liu, L., , IEEE Trans. Automat. Control 66 (2021), 3331-3338. MR4284157DOI
  22. Liu, Y., Min, H., Wang, S., Liu, Z., Liao, S., , J. Franklin Inst. 351 (2014), 1700-1716. MR3165221DOI
  23. Liu, W., Zhou, S., Qi, Y., Wu, X., , Neurocomputing 173 (2016), 1322-1329. DOI
  24. Olfati-Saber, R., Murray, R. M., , IEEE Trans. Automat. Control 49 (2004), 1520-1533. MR2086916DOI
  25. Qian, C., Lin, W., , Systems Control Lett. 42 (2001), 185-200. MR2007048DOI
  26. Qian, Y., Wu, X., Lü, J., Lu, J. A., , Neurocomputing 125 (2014), 142-147. DOI
  27. Ren, C., Nie, R., He, S., , J. Franklin Inst.356 (2019), 8080-8092. MR4010125DOI
  28. Shi, Q., Li, T., Li, J., Chen, C. P., Xiao, Y., Shan, Q., , Neurocomputing 350 (2019), 282-290. DOI
  29. Shi, S., Xu, S., Liu, W., Zhang, B., , IEEE Trans. Cybernet. 50 (2018), 1530-1540. DOI
  30. Song, Q., Cao, J., Yu, W., , Systems Control Lett. 59 (2010), 553-562. MR2761212DOI
  31. Su, S., Lin, Z., Garcia, A., , IEEE Trans. Cybernetics 46 (2015), 325-338. DOI
  32. Valcher, M. E., Zorzan, I., , Automatica 84 (2017), 79-85. MR3689870DOI
  33. Wang, Z., Feng, Y., Zheng, C., Lu, Y., Pan, L., , Kybernetika 54 (2018), 61-78. MR3780956DOI
  34. Wang, Q., Fu, J., Wang, J., , Systems Control Lett. 99 (2017), 33-39. MR3590255DOI
  35. Wang, F., Liu, Z., Chen, Z., , Int. J. Robust Nonlinear Control 28 (2018), 5730-5746. MR3891517DOI
  36. Wang, G., Wang, C., Li, L., , IEEE Trans. Systems Man Cybernet.: Systems 50 (2020), 421-431. DOI
  37. Wen, G., Yu, Y., Peng, Z., Rahmani, A., , Int. J. Control 89 (2016), 2096-2106. MR3568291DOI
  38. Wen, G., Yu, W., Xia, Y., Yu, X., Hu, J., , IEEE Trans. Systems Man Cybernet.: Systems 47 (2016), 869-881. DOI
  39. Xi, J., Fan, Z., Liu, H., Zheng, T., , Int. J. Robust Nonlinear Control 28 (2018), 2841-2852. MR3779425DOI
  40. Yang, K., Zou, W., Xiang, Z., Wang, R., , Discrete Continuous Dynamical Systems-S 14 (2021), 1535-1551. MR4220579DOI
  41. You, X., Hua, C., Guan, X., , IEEE Trans. Cybernet. 49 (2018), 2002-2010. MR3975034DOI
  42. You, X., Hua, C., Li, K., Jia, X., , IEEE Trans. Automat. Control 65 (2020), 5510-5516. MR4184881DOI
  43. Yu, W., Ni, H., Dong, H., Zhang, D., , Kybernetika 26 (2020), 278-297. MR4103718DOI
  44. Zhang, Z., Chen, S., Zheng, Y., 10.1109/TII.2021.3069207, IEEE Trans. Industr. Inform. 18 (2021), 305-314. DOI10.1109/TII.2021.3069207
  45. Zhang, H., Lewis, F. L., , Automatica 48 (2012), 1432-1439. MR2942333DOI
  46. Zhang, Y., Li, S., , Automatica 85 (2017), 426-432. MR3712885DOI
  47. Zhang, L., Sun, J., Yang, Q., , Kybernetika 56 (2020), 217-238. MR4103715DOI
  48. Zhao, G., Zhu, M., , IEEE Trans. Automat. Control 66 (2021), 3984-3999. MR4308453DOI
  49. J, Zhu, Tian, Y. P., Kuang, J., , Linear Algebra Appl. 431 (2009), 701-715. MR2535543DOI
  50. Zou, W., Huang, Y., Ahn, C. K., Xiang, Z., , IEEE Systems J. 14 (2020), 4810-4819. DOI
  51. Zou, Z., Zhang, J., Wang, Y., , IEEE Trans. Industr. Electronics 62 (2014), 3923-3931. DOI
  52. Zou, W., Zhou, C., Guo, J., Xiang, Z., , IEEE Trans. Circuits Systems II: Express Briefs 68 (2020), 702-706. DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.