Consensus of heterogeneous multi-agent systems with uncertain DoS attack: Application to mobile stage vehicles
Wen-Hai Yu; Hong-Jie Ni; Hui Dong; Dan Zhang
Kybernetika (2020)
- Volume: 56, Issue: 2, page 278-297
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topYu, Wen-Hai, et al. "Consensus of heterogeneous multi-agent systems with uncertain DoS attack: Application to mobile stage vehicles." Kybernetika 56.2 (2020): 278-297. <http://eudml.org/doc/297179>.
@article{Yu2020,
abstract = {In this paper, the consensus of heterogeneous multi-agent systems (MASs) with uncertain Deny-of-Service (DoS) attack strategies is studied. In our system, all agents are time synchronized and they communicate with each other with a constant sampling period normally. When the system is under attack, all agents use the hold-input mechanism to update the control protocol. By assuming that the attack duration is upper bounded and the occurrence of the attack follows a Markovian jumping process, the closed-loop system in presence of such a kind of random DoS attack is modeled as a Markovian jumping system, and the attack probabilities are allowed to be partially unknown and uncertain. By means of Lyapunov stability theory and Markovian jumping system approach, sufficient conditions are proposed such that the output consensus can be achieved, and the controller gains are determined by solving some matrix inequalities. Finally, a simulation study on the mobile stage vehicles is performed, showing the effectiveness of main results.},
author = {Yu, Wen-Hai, Ni, Hong-Jie, Dong, Hui, Zhang, Dan},
journal = {Kybernetika},
keywords = {heterogeneous multi-agent systems (MASs); Markovian jumping system; Deny-of-Service (DoS) attack; output feedback control},
language = {eng},
number = {2},
pages = {278-297},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Consensus of heterogeneous multi-agent systems with uncertain DoS attack: Application to mobile stage vehicles},
url = {http://eudml.org/doc/297179},
volume = {56},
year = {2020},
}
TY - JOUR
AU - Yu, Wen-Hai
AU - Ni, Hong-Jie
AU - Dong, Hui
AU - Zhang, Dan
TI - Consensus of heterogeneous multi-agent systems with uncertain DoS attack: Application to mobile stage vehicles
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 2
SP - 278
EP - 297
AB - In this paper, the consensus of heterogeneous multi-agent systems (MASs) with uncertain Deny-of-Service (DoS) attack strategies is studied. In our system, all agents are time synchronized and they communicate with each other with a constant sampling period normally. When the system is under attack, all agents use the hold-input mechanism to update the control protocol. By assuming that the attack duration is upper bounded and the occurrence of the attack follows a Markovian jumping process, the closed-loop system in presence of such a kind of random DoS attack is modeled as a Markovian jumping system, and the attack probabilities are allowed to be partially unknown and uncertain. By means of Lyapunov stability theory and Markovian jumping system approach, sufficient conditions are proposed such that the output consensus can be achieved, and the controller gains are determined by solving some matrix inequalities. Finally, a simulation study on the mobile stage vehicles is performed, showing the effectiveness of main results.
LA - eng
KW - heterogeneous multi-agent systems (MASs); Markovian jumping system; Deny-of-Service (DoS) attack; output feedback control
UR - http://eudml.org/doc/297179
ER -
References
top- Rockel, S., Klimentjew, D., Zhang, J., 10.1109/mfi.2012.6343020, In: 2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 470-477. DOI10.1109/mfi.2012.6343020
- Guo, F., Xu, Q., Wen, C., Wang, L., Wang, P., 10.1109/tste.2018.2816944, IEEE Trans. Sustainable Energy 9 (2018), 4, 1857-1869. DOI10.1109/tste.2018.2816944
- Zheng, Y., Li, S., Li, K., Ren, W., 10.1109/tits.2017.2726038, IEEE Trans. Intell. Transport. Systems 19 (2017), 5, 1353-1364. DOI10.1109/tits.2017.2726038
- Qiu, Y., Xiang, L., 10.1049/iet-cta.2014.0099, IET Control Theory Appl. 8 (2014), 18, 2336-2345. MR3289082DOI10.1049/iet-cta.2014.0099
- Zhou, N., Xia, Y., Fu, M., Li, Y., 10.1049/iet-cta.2014.0878, IET Control Theory Appl. 9 (2015), 10, 1561-1570. MR3381714DOI10.1049/iet-cta.2014.0878
- Zhang, D., Shi, P., Zhang, W., Yu, L., 10.1109/tcyb.2016.2553043, IEEE Trans. Cybernet. 47 (2016), 7, 1618-1629. MR3537173DOI10.1109/tcyb.2016.2553043
- Wieland, P., Sepulchre, R., Allgöwer, F., 10.1016/j.automatica.2011.01.081, Automatica 47 (2011), 5, 1068-1074. MR2878379DOI10.1016/j.automatica.2011.01.081
- Wen, G., Chen, C., Liu, Y., Liu, Z., 10.1109/tcyb.2016.2608499, IEEE Trans. Cybernet. 47 (2016), 8, 2151-2160. MR3358409DOI10.1109/tcyb.2016.2608499
- Hu, W., Yang, C., 10.1109/iwcsn.2017.8276540, In: 2017 International Workshop on Complex Systems and Networks (IWCSN), pp. 284-289. DOI10.1109/iwcsn.2017.8276540
- Ge, X., Han, Q., 10.1109/tcyb.2016.2570860, IEEE Trans. Cybernet. 47 (2016), 8, 1807-1819. DOI10.1109/tcyb.2016.2570860
- Ning, B., Han, Q., Zuo, Z., Jin, J., Zheng, J., 10.1109/tcyb.2017.2708321, IEEE Transactions on Cybernetics 48 (2018), 5, 1577-1590. DOI10.1109/tcyb.2017.2708321
- Zuo, Z., Han, Q., Ning, B., Ge, X., Zhang, X., 10.1109/tii.2018.2817248, IEEE Trans. Industr. Inform. 14 (2018), 6, 2322-2334. MR3932129DOI10.1109/tii.2018.2817248
- Zheng, Y., Ma, J., Wang, L., 10.1109/tits.2017.2726038, IEEE Trans. Neural Networks Learning Systems 29 (2017), 4, 1359-1365. DOI10.1109/tits.2017.2726038
- Li, C., Liu, G., 10.1007/s11424-018-7269-7, J. Systems Sci. Complex. 31 (2018), 1, 87-102. MR3768972DOI10.1007/s11424-018-7269-7
- Wai, H., Yang, Z., Wang, Z., Hong, M., Multi-agent reinforcement learning via double averaging primal-dual optimization., In: Advances in Neural Information Processing Systems (2018), pp. 9649-9660.
- Hashim, H., El-Ferik, S., Lewis, F., 10.1080/00207179.2017.1359422, Int. J. Control 92 (2019), 2, 445-460. MR3938082DOI10.1080/00207179.2017.1359422
- Alfonso, G., Fernando, D., Mohd, M., Sigeru, O., Juan, C., 10.3390/en11081928, Energies 11 (2018), 8, 1928. DOI10.3390/en11081928
- Jia, H., Zhao, J., 10.1002/rnc.3904, Int. J. Robust Nonlinear Control 28 (2018), 3, 838-858. MR3756903DOI10.1002/rnc.3904
- Shi, L., Shao, J., Cao, M., Xia, H., 10.1016/j.ins.2018.06.044, Inform. Sci. 463 (2018), 282-293. MR3836724DOI10.1016/j.ins.2018.06.044
- Zhang, D., Xu, Z., Feng, G., Li, H., 10.1109/tmech.2019.2932322, IEEE/ASME Transactions on Mechatronics 24 (2019), 6, 2627-2640. DOI10.1109/tmech.2019.2932322
- Zhang, D., Shi, P., Yu, L., 10.1109/tnnls.2017.2784365, IEEE Trans. Neural Networks Learning Systems 29 (2018), 10, 5020-5029. MR3875058DOI10.1109/tnnls.2017.2784365
- Feng, Z., Hu, G., Wen, G., 10.1002/rnc.3342, Int. J. Robust Nonlinear Control 26 (2016), 5, 896-918. MR3456652DOI10.1002/rnc.3342
- Zhang, D., Feng, G., A new switched system approach to leader-follower consensus of heterogeneous linear multiagent systems with DoS attack.
- Feng, Z., Hu, G., 10.23919/acc.2017.7963289, In: 2017 American Control Conference (ACC), pp. 2261-2266. DOI10.23919/acc.2017.7963289
- Liu, Z., Guan, Z., Shen, X., Feng, G., 10.1109/tac.2012.2214451, IEEE Trans. Automat. Control 57 (2012), 10, 2639-2643. MR2991667DOI10.1109/tac.2012.2214451
- Ge, X., Han, Q., Zhang, X., 10.1109/tie.2017.2752148, IEEE Trans. Industr. Electron. 65 (2017), 4, 3417-3426. DOI10.1109/tie.2017.2752148
- Liu, H., Cheng, L., Tan, M., Hou, Z., 10.1016/j.automatica.2015.04.005, Automatica 57 (2015), 78-84. MR3350676DOI10.1016/j.automatica.2015.04.005
- Zhang, D., Shi, P., Wang, Q., Yu, L., 10.1016/j.isatra.2016.09.026, ISA Trans. 66 (2017), 376-392. MR2808079DOI10.1016/j.isatra.2016.09.026
- Zhang, D., Xu, Z., Srinivasan, D., Yu, L., 10.1109/tsmc.2017.2677471, IEEE Trans. Systems Man Cybernet.: Systems 47 (2017), 7, 1727-1736. DOI10.1109/tsmc.2017.2677471
- Ni, H., Xu, Z., Zhang, D., Yu, L., 10.1109/cac.2017.8243131, 2017 Chinese Automation Congress (CAC) (2017), 2164-2169. DOI10.1109/cac.2017.8243131
- Ni, H., Xu, Z., Cheng, J., Zhang, D., 10.1007/s12555-018-0658-9, Int. J. Control Automat. Systems 17 (2019), 7, 1687-1698. DOI10.1007/s12555-018-0658-9
- Zhang, D., Liu, L., Feng, G., 10.1109/tcyb.2018.2806387, IEEE Trans. Cybernet. 49 (2019), 4, 1501-1511. DOI10.1109/tcyb.2018.2806387
- Cheng, J., Wang, B., Park, J., Kang, W., 10.1049/iet-cta.2016.1462, IET Control Theory Appl. 11 (2017), 12, 1904-1912. MR3726813DOI10.1049/iet-cta.2016.1462
- Shen, H., Chen, M., Wu, Z., Cao, J., Park, J., 10.1109/tfuzz.2019.2921264, IEEE Trans. Fuzzy Systems (2019). DOI10.1109/tfuzz.2019.2921264
- Cheng, J., Park, J., Cao, J., Qi, W., 10.1109/tcyb.2019.2909748, IEEE Trans. Cybernet. (2019), 1-10. DOI10.1109/tcyb.2019.2909748
- Zhang, D., Shen, Y. P., Zhou, S. Q., Dong, X. W., Yu, L., 10.1109/tsmc.2020.2968606, IEEE Trans. Systems Man Cybernet.: Systems (2020). DOI10.1109/tsmc.2020.2968606
- Biron, Z. A., Dey, S., Pisu, P., 10.1109/tits.2018.2791484, IEEE Trans. Intell. Transport. Systems 19 (2018), 12, 3893-3902. DOI10.1109/tits.2018.2791484
- Feng, Z., Wen, G., Hu, G., 10.1109/tcyb.2016.2544062, IEEE Trans. Cybernet. 47 (2017), 5, 1273-1284. DOI10.1109/tcyb.2016.2544062
- Jiao, Q., Modares, H., Lewis, F., Xu, S., Xie, L., 10.1016/j.automatica.2016.04.025, Automatica 71 (2016), 361-368. MR3521989DOI10.1016/j.automatica.2016.04.025
- Zhao, Y., Zhang, L., Shen, S., Gao, H., 10.1109/tnn.2010.2093151, IEEE Trans. Neural Networks 22 (2010), 1, 164-170. DOI10.1109/tnn.2010.2093151
- Su, Y., Xu, L., Wang, X., Xu, D., 10.1016/j.automatica.2019.06.008, Automatica 107 (2019), 600-604. MR3988648DOI10.1016/j.automatica.2019.06.008
- Peng, C., Zhang, J., Han, Q., 10.1109/tsmc.2018.2814572, IEEE Trans. Systems Man Cybernet.: Systems 49 (2018), 3, 589-599. DOI10.1109/tsmc.2018.2814572
- Wu, Z., Xu, Y., Pan, Y., Su, H., Tang, Y., 10.1109/tcsi.2017.2777504, IEEE Trans. Circuits Systems I: Regular Papers 65 (2018), 7, 2232-2242. MR3815370DOI10.1109/tcsi.2017.2777504
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.