Consensus of heterogeneous multi-agent systems with uncertain DoS attack: Application to mobile stage vehicles

Wen-Hai Yu; Hong-Jie Ni; Hui Dong; Dan Zhang

Kybernetika (2020)

  • Volume: 56, Issue: 2, page 278-297
  • ISSN: 0023-5954

Abstract

top
In this paper, the consensus of heterogeneous multi-agent systems (MASs) with uncertain Deny-of-Service (DoS) attack strategies is studied. In our system, all agents are time synchronized and they communicate with each other with a constant sampling period normally. When the system is under attack, all agents use the hold-input mechanism to update the control protocol. By assuming that the attack duration is upper bounded and the occurrence of the attack follows a Markovian jumping process, the closed-loop system in presence of such a kind of random DoS attack is modeled as a Markovian jumping system, and the attack probabilities are allowed to be partially unknown and uncertain. By means of Lyapunov stability theory and Markovian jumping system approach, sufficient conditions are proposed such that the output consensus can be achieved, and the controller gains are determined by solving some matrix inequalities. Finally, a simulation study on the mobile stage vehicles is performed, showing the effectiveness of main results.

How to cite

top

Yu, Wen-Hai, et al. "Consensus of heterogeneous multi-agent systems with uncertain DoS attack: Application to mobile stage vehicles." Kybernetika 56.2 (2020): 278-297. <http://eudml.org/doc/297179>.

@article{Yu2020,
abstract = {In this paper, the consensus of heterogeneous multi-agent systems (MASs) with uncertain Deny-of-Service (DoS) attack strategies is studied. In our system, all agents are time synchronized and they communicate with each other with a constant sampling period normally. When the system is under attack, all agents use the hold-input mechanism to update the control protocol. By assuming that the attack duration is upper bounded and the occurrence of the attack follows a Markovian jumping process, the closed-loop system in presence of such a kind of random DoS attack is modeled as a Markovian jumping system, and the attack probabilities are allowed to be partially unknown and uncertain. By means of Lyapunov stability theory and Markovian jumping system approach, sufficient conditions are proposed such that the output consensus can be achieved, and the controller gains are determined by solving some matrix inequalities. Finally, a simulation study on the mobile stage vehicles is performed, showing the effectiveness of main results.},
author = {Yu, Wen-Hai, Ni, Hong-Jie, Dong, Hui, Zhang, Dan},
journal = {Kybernetika},
keywords = {heterogeneous multi-agent systems (MASs); Markovian jumping system; Deny-of-Service (DoS) attack; output feedback control},
language = {eng},
number = {2},
pages = {278-297},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Consensus of heterogeneous multi-agent systems with uncertain DoS attack: Application to mobile stage vehicles},
url = {http://eudml.org/doc/297179},
volume = {56},
year = {2020},
}

TY - JOUR
AU - Yu, Wen-Hai
AU - Ni, Hong-Jie
AU - Dong, Hui
AU - Zhang, Dan
TI - Consensus of heterogeneous multi-agent systems with uncertain DoS attack: Application to mobile stage vehicles
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 2
SP - 278
EP - 297
AB - In this paper, the consensus of heterogeneous multi-agent systems (MASs) with uncertain Deny-of-Service (DoS) attack strategies is studied. In our system, all agents are time synchronized and they communicate with each other with a constant sampling period normally. When the system is under attack, all agents use the hold-input mechanism to update the control protocol. By assuming that the attack duration is upper bounded and the occurrence of the attack follows a Markovian jumping process, the closed-loop system in presence of such a kind of random DoS attack is modeled as a Markovian jumping system, and the attack probabilities are allowed to be partially unknown and uncertain. By means of Lyapunov stability theory and Markovian jumping system approach, sufficient conditions are proposed such that the output consensus can be achieved, and the controller gains are determined by solving some matrix inequalities. Finally, a simulation study on the mobile stage vehicles is performed, showing the effectiveness of main results.
LA - eng
KW - heterogeneous multi-agent systems (MASs); Markovian jumping system; Deny-of-Service (DoS) attack; output feedback control
UR - http://eudml.org/doc/297179
ER -

References

top
  1. Rockel, S., Klimentjew, D., Zhang, J., 10.1109/mfi.2012.6343020, In: 2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 470-477. DOI10.1109/mfi.2012.6343020
  2. Guo, F., Xu, Q., Wen, C., Wang, L., Wang, P., 10.1109/tste.2018.2816944, IEEE Trans. Sustainable Energy 9 (2018), 4, 1857-1869. DOI10.1109/tste.2018.2816944
  3. Zheng, Y., Li, S., Li, K., Ren, W., 10.1109/tits.2017.2726038, IEEE Trans. Intell. Transport. Systems 19 (2017), 5, 1353-1364. DOI10.1109/tits.2017.2726038
  4. Qiu, Y., Xiang, L., 10.1049/iet-cta.2014.0099, IET Control Theory Appl. 8 (2014), 18, 2336-2345. MR3289082DOI10.1049/iet-cta.2014.0099
  5. Zhou, N., Xia, Y., Fu, M., Li, Y., 10.1049/iet-cta.2014.0878, IET Control Theory Appl. 9 (2015), 10, 1561-1570. MR3381714DOI10.1049/iet-cta.2014.0878
  6. Zhang, D., Shi, P., Zhang, W., Yu, L., 10.1109/tcyb.2016.2553043, IEEE Trans. Cybernet. 47 (2016), 7, 1618-1629. MR3537173DOI10.1109/tcyb.2016.2553043
  7. Wieland, P., Sepulchre, R., Allgöwer, F., 10.1016/j.automatica.2011.01.081, Automatica 47 (2011), 5, 1068-1074. MR2878379DOI10.1016/j.automatica.2011.01.081
  8. Wen, G., Chen, C., Liu, Y., Liu, Z., 10.1109/tcyb.2016.2608499, IEEE Trans. Cybernet. 47 (2016), 8, 2151-2160. MR3358409DOI10.1109/tcyb.2016.2608499
  9. Hu, W., Yang, C., 10.1109/iwcsn.2017.8276540, In: 2017 International Workshop on Complex Systems and Networks (IWCSN), pp. 284-289. DOI10.1109/iwcsn.2017.8276540
  10. Ge, X., Han, Q., 10.1109/tcyb.2016.2570860, IEEE Trans. Cybernet. 47 (2016), 8, 1807-1819. DOI10.1109/tcyb.2016.2570860
  11. Ning, B., Han, Q., Zuo, Z., Jin, J., Zheng, J., 10.1109/tcyb.2017.2708321, IEEE Transactions on Cybernetics 48 (2018), 5, 1577-1590. DOI10.1109/tcyb.2017.2708321
  12. Zuo, Z., Han, Q., Ning, B., Ge, X., Zhang, X., 10.1109/tii.2018.2817248, IEEE Trans. Industr. Inform. 14 (2018), 6, 2322-2334. MR3932129DOI10.1109/tii.2018.2817248
  13. Zheng, Y., Ma, J., Wang, L., 10.1109/tits.2017.2726038, IEEE Trans. Neural Networks Learning Systems 29 (2017), 4, 1359-1365. DOI10.1109/tits.2017.2726038
  14. Li, C., Liu, G., 10.1007/s11424-018-7269-7, J. Systems Sci. Complex. 31 (2018), 1, 87-102. MR3768972DOI10.1007/s11424-018-7269-7
  15. Wai, H., Yang, Z., Wang, Z., Hong, M., Multi-agent reinforcement learning via double averaging primal-dual optimization., In: Advances in Neural Information Processing Systems (2018), pp. 9649-9660. 
  16. Hashim, H., El-Ferik, S., Lewis, F., 10.1080/00207179.2017.1359422, Int. J. Control 92 (2019), 2, 445-460. MR3938082DOI10.1080/00207179.2017.1359422
  17. Alfonso, G., Fernando, D., Mohd, M., Sigeru, O., Juan, C., 10.3390/en11081928, Energies 11 (2018), 8, 1928. DOI10.3390/en11081928
  18. Jia, H., Zhao, J., 10.1002/rnc.3904, Int. J. Robust Nonlinear Control 28 (2018), 3, 838-858. MR3756903DOI10.1002/rnc.3904
  19. Shi, L., Shao, J., Cao, M., Xia, H., 10.1016/j.ins.2018.06.044, Inform. Sci. 463 (2018), 282-293. MR3836724DOI10.1016/j.ins.2018.06.044
  20. Zhang, D., Xu, Z., Feng, G., Li, H., 10.1109/tmech.2019.2932322, IEEE/ASME Transactions on Mechatronics 24 (2019), 6, 2627-2640. DOI10.1109/tmech.2019.2932322
  21. Zhang, D., Shi, P., Yu, L., 10.1109/tnnls.2017.2784365, IEEE Trans. Neural Networks Learning Systems 29 (2018), 10, 5020-5029. MR3875058DOI10.1109/tnnls.2017.2784365
  22. Feng, Z., Hu, G., Wen, G., 10.1002/rnc.3342, Int. J. Robust Nonlinear Control 26 (2016), 5, 896-918. MR3456652DOI10.1002/rnc.3342
  23. Zhang, D., Feng, G., A new switched system approach to leader-follower consensus of heterogeneous linear multiagent systems with DoS attack. 
  24. Feng, Z., Hu, G., 10.23919/acc.2017.7963289, In: 2017 American Control Conference (ACC), pp. 2261-2266. DOI10.23919/acc.2017.7963289
  25. Liu, Z., Guan, Z., Shen, X., Feng, G., 10.1109/tac.2012.2214451, IEEE Trans. Automat. Control 57 (2012), 10, 2639-2643. MR2991667DOI10.1109/tac.2012.2214451
  26. Ge, X., Han, Q., Zhang, X., 10.1109/tie.2017.2752148, IEEE Trans. Industr. Electron. 65 (2017), 4, 3417-3426. DOI10.1109/tie.2017.2752148
  27. Liu, H., Cheng, L., Tan, M., Hou, Z., 10.1016/j.automatica.2015.04.005, Automatica 57 (2015), 78-84. MR3350676DOI10.1016/j.automatica.2015.04.005
  28. Zhang, D., Shi, P., Wang, Q., Yu, L., 10.1016/j.isatra.2016.09.026, ISA Trans. 66 (2017), 376-392. MR2808079DOI10.1016/j.isatra.2016.09.026
  29. Zhang, D., Xu, Z., Srinivasan, D., Yu, L., 10.1109/tsmc.2017.2677471, IEEE Trans. Systems Man Cybernet.: Systems 47 (2017), 7, 1727-1736. DOI10.1109/tsmc.2017.2677471
  30. Ni, H., Xu, Z., Zhang, D., Yu, L., 10.1109/cac.2017.8243131, 2017 Chinese Automation Congress (CAC) (2017), 2164-2169. DOI10.1109/cac.2017.8243131
  31. Ni, H., Xu, Z., Cheng, J., Zhang, D., 10.1007/s12555-018-0658-9, Int. J. Control Automat. Systems 17 (2019), 7, 1687-1698. DOI10.1007/s12555-018-0658-9
  32. Zhang, D., Liu, L., Feng, G., 10.1109/tcyb.2018.2806387, IEEE Trans. Cybernet. 49 (2019), 4, 1501-1511. DOI10.1109/tcyb.2018.2806387
  33. Cheng, J., Wang, B., Park, J., Kang, W., 10.1049/iet-cta.2016.1462, IET Control Theory Appl. 11 (2017), 12, 1904-1912. MR3726813DOI10.1049/iet-cta.2016.1462
  34. Shen, H., Chen, M., Wu, Z., Cao, J., Park, J., 10.1109/tfuzz.2019.2921264, IEEE Trans. Fuzzy Systems (2019). DOI10.1109/tfuzz.2019.2921264
  35. Cheng, J., Park, J., Cao, J., Qi, W., 10.1109/tcyb.2019.2909748, IEEE Trans. Cybernet. (2019), 1-10. DOI10.1109/tcyb.2019.2909748
  36. Zhang, D., Shen, Y. P., Zhou, S. Q., Dong, X. W., Yu, L., 10.1109/tsmc.2020.2968606, IEEE Trans. Systems Man Cybernet.: Systems (2020). DOI10.1109/tsmc.2020.2968606
  37. Biron, Z. A., Dey, S., Pisu, P., 10.1109/tits.2018.2791484, IEEE Trans. Intell. Transport. Systems 19 (2018), 12, 3893-3902. DOI10.1109/tits.2018.2791484
  38. Feng, Z., Wen, G., Hu, G., 10.1109/tcyb.2016.2544062, IEEE Trans. Cybernet. 47 (2017), 5, 1273-1284. DOI10.1109/tcyb.2016.2544062
  39. Jiao, Q., Modares, H., Lewis, F., Xu, S., Xie, L., 10.1016/j.automatica.2016.04.025, Automatica 71 (2016), 361-368. MR3521989DOI10.1016/j.automatica.2016.04.025
  40. Zhao, Y., Zhang, L., Shen, S., Gao, H., 10.1109/tnn.2010.2093151, IEEE Trans. Neural Networks 22 (2010), 1, 164-170. DOI10.1109/tnn.2010.2093151
  41. Su, Y., Xu, L., Wang, X., Xu, D., 10.1016/j.automatica.2019.06.008, Automatica 107 (2019), 600-604. MR3988648DOI10.1016/j.automatica.2019.06.008
  42. Peng, C., Zhang, J., Han, Q., 10.1109/tsmc.2018.2814572, IEEE Trans. Systems Man Cybernet.: Systems 49 (2018), 3, 589-599. DOI10.1109/tsmc.2018.2814572
  43. Wu, Z., Xu, Y., Pan, Y., Su, H., Tang, Y., 10.1109/tcsi.2017.2777504, IEEE Trans. Circuits Systems I: Regular Papers 65 (2018), 7, 2232-2242. MR3815370DOI10.1109/tcsi.2017.2777504

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.